

A Task Oriented View of Software Visualization

Jonathan I. Maletic, Andrian Marcus, Michael L. Collard,
Department of Computer Science

Kent State University
Kent Ohio 44242

330 672 9039
jmaletic@cs.kent.edu, amarcus@cs.kent.edu, collard@cs.kent.edu

Abstract

A number of taxonomies to classify and categorize
software visualization systems have been proposed in the
past. Most notable are those presented by Price [1993]
and Roman [1993]. While these taxonomies are an
accurate representation of software visualization issues,
they are somewhat skewed with respect to current
research areas on software visualization. We revisit this
important work and propose a number of realignments
with respect to addressing the software engineering tasks
of large-scale development and maintenance. We
propose a framework to emphasize the general tasks of
understanding and analysis during development and
maintenance of large-scale software systems. Five
dimensions relating to the what, where, how, who, and
why of software visualization make up this framework.
The focus of this work is not so much as to classify
software visualization system, but to point out the need
for matching the method with the task. Lastly, a number
of software visualization systems are examined under our
framework to highlight the particular problems each
addresses.

1. Introduction

Software visualization represents many things to
many people. Price presents the following general
definition of software visualization:

“Software visualization is the use of the crafts of
typography, graphic design, animation and
cinematography with modern human-computer
interaction and computer graphics technology to
facilitate both the human understanding and
effective use of computer software.” [18].

This definition subsumes such diverse topics as
program visualization, algorithm animation, visual
programming, programming by demonstration, data
visualization, and source code browsers. This diversity is
reflected in the taxonomic descriptions of the field by

researchers such as Price [17, 18], Roman [22], Myers
[15], and Stasko [24].

While each of these topics has interesting and
important problems, the breadth induces many orthogonal
features and issues. There is a need to focus the scope
and highlight the current issues reflected in software
engineering of today. Therefore, we develop our
framework to emphasize the general tasks of
understanding and analysis during development and
maintenance of large-scale software systems. This said
we exclude a discussion of topics such as algorithm
animation and visual programming, as these are tangential
to this perspective. As our framework is presented, the
reasoning of this decision will become more apparent.

Additionally, we argue that no single software
visualization tool can address all software engineering
tasks simultaneously. While this may be obvious,
taxonomies often highlight the lack of functionality in a
tool rather then focusing on its strength in addressing a
particular problem.

Large-scale software maintenance and development
involve a variety of application tasks. These tasks range
from coding and debugging, to design and re-engineering.
The underlying theme is that most development and
maintenance tasks require a level of understanding the
associated software system and documentation. This is
the promise of visualization tools – that they assist the
user in (better) understanding some aspect of the
software. This could range from uncovering bottlenecks
in execution data or identifying poor architecture or
design. These two problems are quite orthogonal with
respect to the types of understanding necessary for
problem solving.

These different software engineering tasks should be
addressed by different visual representations. That is, we
should use the most appropriate visualization mechanism
for the given task.

Before we define our framework, let us step back and
adopt a reference model for visualization. This reference
model will lay the foundation of our framework and more
formally tie software visualization research with the more
general research on information visualization.

2. A Reference Model for Visualization

Card [3] proposes that visualization is a mapping
from data to a visual form that the human perceives.
Figure 1, adapted from [3], describes these mappings and
serves as a simple reference model for visualization. In
this figure, the flow of data goes through a series of
transformations. The human may adjust these
transformations, via user controls, to address the
particular application task.

The first transformation converts raw data into more
usable data tables. The raw data is typically in some
domain specific format that is often hard, or impossible,
to work with. This is very apparent when working with
trace data generated from program executions. Data
tables [3] are relational depictions of this data.
Information about the relational characteristics of the data
(meta data) can also be included in the data tables. Meta
data is descriptive information about the data [27]. From
here, visual mappings transform the data tables into visual
structures (graphical elements). Finally, the view
transformations create views of the visual structures by
specifying parameters such as position, rotation, scaling,
etc. User interaction controls the parameters of these
transformations. The visualizations and their controls are
all with respect to the application task.

The core of the reference model is the mapping of a
data table to a visual structure. Data tables are based on
mathematical relationships whereas visual structures are
based on graphical properties processed by human vision.
Although raw data can be viewed directly, data tables are

a vital intermediate step when the data is abstract [4, 11,
19].

Software visualization maps to this reference model
directly. The raw data is source code, execution data,
design documents, etc. In the case of execution (trace)
data, the readability is minimal. However, source code is
readable, at least on a small scale, that is, one can hardly
keep in mind more the a few dozen lines of source at one
time. Data tables, an abstraction of the raw data, take the
form of abstract syntax trees, program dependence
graphs, or class/object relationships for example. A
variety of software analysis tools can generate this type of
data (table). Visual structures are then the software-
specific visualizations we render. These visual structures
are typically very specific to a particular software
engineering task.

This model also points out the need to transform raw
data into something more usable. This includes initial
acquisition, quality, and granularity of the data. While
these issues are not high profile for source code, they are
a key component for dealing with the huge amounts of
data that can be generated from execution traces, or from
parse trees of large systems.

The software visualization process maps on top of
this reference visualization model. Roman [22] and Price
[17, 18], each define their own general model of the
software visualization. Their views are more domain
specific and omit aspects related to generation of views
and data transformations. These models drive the
definition of their respective taxonomies. We believe, the
general information visualization reference model should

Figure 1. Reference Model for Visualization. Visualization can be described as a mapping of
data to visual form that supports human interaction for making visual sense [3].

Raw Data: idiosyncratic formats
Data Tables: relations (cases by variables) + meta data
Visual Structures: spatial substrates + marks + graphical properties
Views: graphical parameters (position, scaling, clipping, etc.)

Human
Perceiver

Raw Data Data
Tables

Visual
Structures Views

Data
Transformations

Visual
Mappings

View
Transformations

Human Interaction Human Interaction

Data Visual Form

also be taken into direct consideration by a software
visualization system designer.

We now describe the dimensions used to characterize
software visualization.

3. Dimensions of Software Visualization

As mentioned previously, our focus is to describe
software visualization systems in light of their
applications toward supporting large-scale software
development and maintenance. In order to accomplish
this task we define five dimensions of software
visualization. These dimensions reflect the why, who,
what, where and, how of the software visualization. The
dimensions are as follows:

• Tasks – why is the visualization needed?
• Audience – who will use the visualization?
• Target – what is the data source to represent?
• Representation – how to represent it?
• Medium – where to represent the visualization?

These dimensions define a framework capable of
accommodating a large spectrum of software
visualization systems, including topics outside the scope
of this work (e.g., algorithm animation and visual
programming tools).

Table 1 presents how these five dimension map to the
attributes proposed by Roman and Price in their
respective taxonomies. Both these taxonomies describe
the attributes of software visualization; the difference here
is what we choose to emphasis as the most important
aspects.

We now describe these dimensions in detail after
which we present examples of select visualization
systems and map them along our dimensions. The
majority of these systems predate the previously
mentioned taxonomies.

3.1. Tasks

The task dimension defines why the visualization is
needed. In other words, it specifies what particular
software engineering task(s) are supported by the
software visualization system. In general, every
visualization system supports understanding of one or
more aspects of a software system. This understanding
process will in turn support a particular engineering task.
Early visualization tools (e.g., algorithm animation, data
flow, etc.) were aimed at supporting understanding for
education purposes. Visual programming systems
support domain specific programming. Many of today’s
software visualization tools support software engineering
tasks for large software systems. These tasks include:
development activities (e.g., programming [2], debugging
[1], testing [10] [5], etc.), maintenance [7] (e.g., fault
detection [8, 10], re-engineering, reverse engineering
[16], etc.), software process management, and marketing.
Based on these specific tasks, the user needs to obtain
different levels, or types, of understanding of the
software. Consequently, the developer will require
different visualization tools, each with its own specific
goals.

This aspect of software visualization is not covered
by Roman’s taxonomy and is marginally addressed within
the taxonomy proposed by Price et al (as seen table 1).
This is due in great part to the state of the art of the field
nearly a decade ago.

In our view, this dimension is the driving force
behind defining a classification of software visualization
systems. If such a system does not support the
engineering tasks on the user’s agenda, the other features
are of no importance. In addition, as discussed earlier,
different software engineering task require visualizations
with different characteristics. These characteristics are
then later defined along the other dimensions, with
respect to the supported engineering task.

With respect to the reference model described in
section 2, the task dictates the type of views and visual
Table 1. Overview of the relations between the proposed dimensions and the criteria defined in
the taxonomies of Roman [22] and Price et all [17,18] respectively.

Dimension Roman [Roman'93] Price et all. [Price'93, '98]

Task *** F.1: Purpose
Audience *** F.1: Purpose
Target Scope

Abstraction
A: Scope
B: Content

Representation Specification method
Interface
Presentation

C: Form
D: Method
E: Interaction
F: Effectiveness

Medium *** C: Form

structures. The same underlying data (or data tables) can
be used to produce task specific visualizations with which
the user interacts.

3.2. Audience

Based on the supported task, the software
visualization tool may be geared towards different types
of users. The audience dimension defines the attributes
of the users of the visualization system. If the primary
supported task is education, students and/or instructors
form the audience. In the industrial setting (which is of
keen interest here), the audience will be developers,
maintainers, testing personnel, and/or software process or
team managers. In addition, different tools can be
tailored towards users with different skills (e.g.,
experienced versus beginners or developer versus
manager). In general, an experienced developer will have
drastically different information needs than a novice or
new team member. Also, the amount of training
necessary to use a visualization tool comes into play.
There are two schools of thought here, one is that a tool
should be simple to use, however this typically limits the
functionality of the tool. The other alternative is to
require users to be trained to use the system properly. We
believe that if a developer takes the time to be trained in a
programming language/environment than spending time
to learn about the visualization tool is a reasonable
request.

The audience aspect is omitted in Roman’s
taxonomy, while the taxonomy proposed by Price et al
combines it into one common attribute (i.e., Purpose) with
the supported engineering task (see table 1). This is a
matter of priorities rather then a fault in the taxonomies.

With respect to the reference model, the users role is
obvious. However, note the user interacts with the
visualization system via sets of parameters. These
parameters dictate the views and thus support the
particular task for the type of user.

3.3. Target

The target of a software visualization system defines
what (low level) aspects of the software are visualized.
The target is a work product, artifact, or part of the
environment of the software system. It is the source of
the data (raw data in the reference model). Meta data and
data tables represent the underlying meaning of the data
along with translations of the data (e.g., the abstract
syntax tree). Along this dimension, we are considering as
targets of visualization the architecture, the design, the
algorithm, the source code, the data, execution/trace
information, measurements and metrics, documentation,
and process information.

The simplest visualization systems aim to represent
the source code in a more readable and easier to
understand form for the user. Pretty printers, integrated
development environments are examples of tools that
perform these types of visualizations. Notable here is
SeeSoft [8]; a visualization tool that is specialized in
representing source code of large software systems.
Flow-charts are probably the oldest form of visualizing
algorithmic type information. Other systems are
concerned with visualizing execution information
BeeHive [20], Jinsight [6] that can be captured real time
or as a whole and examined after the execution. These
types of tools are usually geared to support testing,
optimizations, etc.

This dimension corresponds to the Scope and
Abstraction criteria defined by Roman, and the Scope and
Content criteria defined by Price (as seen in table 1).
Both taxonomies do an excellent job covering these
aspects in detail, thus it is not necessary to further
elaborate on this dimension. An important issue with
those taxonomies is the omission of architecture and
design level information from these categories. Once
again, this is explained by the fact that at the time
software visualization systems were, for the most part,
targeted toward small programs, rather than large-scale
software systems. Tools that target design and/or
architecture level information usually support program
understanding with reverse engineering or reengineering
in mind: IMSOvison [13], SoftArch [9], SHriMP [25],
etc.

Other types of target source data are measurements
and metrics obtained from software, process information,
and documentation. Visualization of this type of
information can support the software process and team
management activities.

At a more detailed level, this dimension includes
attributes relating to issues such as data collection (i.e.,
time of collection, method of collection, invasiveness,
etc.) and issues relating to the programming language and
environments (e.g., paradigm, concurrency, parallel
processing, etc.). These criteria are well covered in the
taxonomy proposed by Price et al and map directly onto
this dimension in our framework.

Finally, a very important aspect of the target is the
scalability issue. Some systems can only visualize a
small amount of information but, in general, engineering
tasks require the ability to visualize (very) large amounts
of data, considering that real-life software systems have
millions of lines of code and can generate gigabytes of
trace information. To represent such large amounts of
data special mediums and representation techniques need
to be utilized.

3.4. Representation

Depending on the goals and target of the software
visualization system, the type of users and available
medium, a form of representation needs to be defined to
best convey the target information to the user. This
dimension defines how the visualization is constructed
based on the available information. The representation
manifests itself as the visual structures in the reference
model. In designing a software visualization system, this
is one of the more important elements. We look to the
research in information visualization and cognitive
sciences [12, 21, 26, 28-30] to make the best choices in
designing software visualization systems. This research
centers on methods to best map raw data into a visual
structure and view.

MacKinlay [12] defined two criteria to evaluate the
mapping of data to a visual metaphor: expressiveness and
effectiveness. These criteria were used in 2D mappings,
but can also be applied for 3D mappings. Expressiveness
refers to the capability of the metaphor to visually
represent all the information we desire to visualize. For
instance, if the number of visual parameters available in
the metaphor for displaying information is fewer than the
number of data values we wish to visualize, the metaphor
will not be able to meet the expressiveness criterion.

The relationship between data values and visual
parameters has to be a univocal relationship; otherwise, if
more than one data value is mapped onto the same visual
parameter then it will be impossible to distinguish one
value’s influence from the other. On the other hand, there
can always be visual parameters that are not used to map
information, as long as there is no need for them to be
utilized.

The second criterion, effectiveness, relates to the
efficacy of the metaphor as a means of representing the
information. Along the effectiveness dimension we can
further distinguish several criteria: effectiveness regarding
the information passing as visually perceived, regarding
aesthetic concerns, regarding optimization (e.g., number
of polygons needed to render the world).

In the case of quantitative data (e.g., software
metrics, LOC, trace data), not only the number of visual
parameters has to be sufficient to map all the data, but
also, they must be able to map the right data. There are
visual parameters that are not able to map a specific
category of data; for instance, shape is not useful for
mapping quantitative data, while the size of a metaphor is.

Effectiveness implies the categorization of the visual
parameters according to its capabilities of encoding the
different types of information. Moreover, this also
implies categorizing the information according to its
importance so that information that is more important can
be encoded more efficiently when options must be taken.
This categorization of the importance of the information

has two expressions: one is an assigned importance of the
information in the context of a software system; the other
is a preference of the user. Nonetheless, the user may
choose to override this and define his own importance of
the data, according to his priorities when visualizing a
software system. For example, one could give preference
in a visualization to the public members of an object-
oriented class, versus the private ones.

In order to satisfy these criteria for the mapping, one
must have a solid data characterization. Data
characterization is usually the first step to understand a
phenomenon or system. Developing a taxonomy helps to
make sense of large amounts of information. Although
these characteristics of data apply mostly to data
visualization, they must be taken into consideration in
software visualization as well. The metaphors should be
designed such that they maximize the amount of data that
can be represented with an accent on the user’s
information seeking goals.

The power of a visualization language is derived
from its semantic richness, simplicity, and level of
abstraction. The aim is to develop a language with few
metaphors and constructs, but with the ability to represent
a variety of elements with no ambiguity or loss of
meaning. In addition, the visualization has to maximally
use the potential of the used media. For example, a good
VR representation will make use of all the navigation
possibilities in a 3D landscape and the fact that the user is
immersed in the environment, while maintaining a natural
feeling of the representation, and avoiding the
information overload.

As mentioned, an important aspect to be considered
in defining a visual representation is the nature of its
users. One may design a representation for use by
software developers with solid knowledge of
programming, program designs, and system architecture.
The metaphors in the representation should be simple,
having a familiar form and straightforward mapping to
the target.

With all these considerations in mind, the
representation can take several forms (e.g., source code,
tables, diagrams, charts, visual metaphors – icons, figures,
images, worlds, etc.) and have various attributes (e.g.,
interactive, static, dynamic, on-line or off-line views,
multiple views, drill-down capabilities, multiple
abstraction levels, etc.). Once again, these elements and
attributes need to be defined and designed with several
goals in mind, to support the needs of the user.

Shneiderman [23], presents seven high level user
needs that an information visualization application should
support. For evaluation purposes, we must refine these
into lower-level tasks as done by Wiss, Carr, and Jonsson
[32]. The needs are presented below and should act as a
guideline for developing navigational needs of the user:

Overview: Gain an overview of the entire collection
of data that is represented. This is often a difficult
problem in the case of visualizing the structural
information of large systems. Constructing good
visualizations of large connected graphs is an open
research area.

Zoom: Zoom in on items of interest. When
zooming, it is important that global context can be
retained. This subsumes methods to drill down to lower
levels of abstraction.

Filter: Filter out uninteresting items. Filtering by
removing parts of the visualization will necessarily
disturb the global context. Therefore, it is important to
see whether the design supports some kind of abstraction
of the removed parts.

Details-on-demand: Select an item or group and get
details when needed. Getting details on a selected item is
usually implemented by the embedding application. The
detail representation is of less importance in large-scale
software visualization therefore, priority will be given to
easy and fast navigation and rendering. The visual
metaphors are designed such that there is no loss of
meaning while zooming in or out.

Relate: View relationships among items. For a
hierarchical data structure, it is necessary that the
visualization show parent-child relationships. This is one
of the most important features of many software
visualization systems. Software systems rely on many
inter-related components, working together to solve
problems.

History: Keep a history of actions to support undo,
replay, and progressive refinement. A visitation path
should be supported. That is a set of attributes, which
describe the position of the camera, the light, and the
zoom level. These viewpoints can be saved and
reviewed. A sequence of such viewpoints can be played,
thus representing a path within the visualization, which
could represent the history.

Extract: Allow extraction of sub-collections and of
query parameters. This task concerns saving the current
state of the visualization. This is related only to the
application and the underlying data set. How the data is
visualized does not affect this.

In addition to these criteria, Roman and Price’s
taxonomies offer a detailed classification of the forms,
methods, interfaces, interactions, and effectiveness of the
visual representation (see table 1).

3.5. Medium

The medium is where the visualization is rendered.
That is, the display medium. The ones generally used by
software visualization systems today are: paper and
(colored) pencil, black and white monitors, color monitors
(21 inch), multiple monitors (2*21 inch), and high-

resolution/large sized displays (e.g., plasma screens and
projectors). Other mediums being investigated for use by
software visualization systems are: stereo displays,
immersive virtual reality environments, and multi-typed
mediums (e.g., a laptop in an VR environment). Every
and each of these mediums have different characteristics
and in consequence are suited for different tasks. For
example, paper and low-end monitors are well suited for
small-scale, low-dimension, static representations, while
virtual immersive environments offer expansive real
estate for visualizations of large structures (e.g.,
connected graphs) and the ability to make use of other
sensorial inputs (e.g., sound, smell, motion, haptics, etc.).

Most taxonomies of software visualization do not
address the aspect of mediums. This is a wholly
information visualization issue. The development of new
mediums is driven by user needs and the market place.
The recent advances in technology and continued
reduction in cost of these technologies give rise to new
mediums and thus new opportunities for better
representations.

The medium is not explicit in the reference model but
it is an implicit concept. The user must interact and
perceive the visualization from some technology. We see
this as an important aspect for software visualization in
the future. The information visualization community has
been taking advantage of mediums for quite some time
and this research is starting to flow to the realm of
software visualization.

4. Mapping Software Visualization Systems

This section presents a number of software
visualization tools and systems that have very different
features along the defined dimensions of our framework.
Most notably they have different targets, some use
different mediums, and they support different tasks. For
the most part, these tools were developed after the
publication of the previous taxonomies. Table 2 presents
a summary of their attributes over the five dimensions of
our framework.

SeeSoft [8] is a tool for visualizing software statistics
about lines of code. It uses a thin colored line to represent
each line of code in a file. The color (and brightness) of
the line is calculated from the statistics that the tool has
about that line. The indentation of the code can also be
preserved. Since each line of code is shown as a single
line of pixels it is capable of representing more than
50,000 lines of code one screen. Sections of code can be
selected from the lines and viewed in a reading window.
The visualization is interactive allowing for zoom actions,
selection, and filtering. It is a versatile and general tool
that can support a variety of tasks. On top of the source
line information colors can encode various data such as
testing data, data types, version control, etc. It is suited

for analyzing reasonably large software systems but
without accommodating design or architecture level
information. It has been used to analyze version control
data, feature location in source code, etc.

SHriMP (Simple Hierarchical Multi-Perspective)
[25] allows views of hierarchical software structures
showing many levels from the actual source to classes and
package views. It has been customized for browsing Java
programs. The hierarchies are represented using nested
graphs. The views allow zooming of various kinds with
hypertext browsing over nested graphs. SHriMP is one of
the few software visualization tools that is able to
visualize aspects of design level information, it allows
multiple views of the software system, and has drill-down
capabilities from class hierarchy to source code and back,
as well as documentation representation. The
visualization is highly interactive, offering a multitude of
feature to the user. It is useful in understanding activities
for reverse engineering. Additionally, its underlying
diagrammatic visual representation can represent data
from other sources than software.

Tarantula [10] is a tool for fault location in source

code. The information about defects and test suites is
display with color and brightness. The results of the
multiple tests are used to determine the color and
brightness for each line of code. The user can quickly
spot which lines of code were executed when test cases
failed and gauge how much a specific line of code was
responsible for the error. The representation is based on
SeeSoft [8].

IMSOvision (IMmersive SOftware VISualizatION)
[14] is a system that supports program understanding and
development through software visualization. It uses a
virtual environment as the medium for visualization and
uses a specially designed visualization language that maps
source code into the virtual environment. This language,
LOOC (Language for OO software Comprehension),
incorporates some of the features of UML and allows for
a natural representation of certain source code level
complexity metrics. LOOC maps heterogeneous data
(classes, entities, relationships, and quantitative
information) to the visual metaphors. Metric information
is also incorporated into the visualization. Just like
SHriMP, IMSOvision is suited to support understanding

Table 2. Mapping of the five software visualization systems along the five dimensions of the

framework. Not all features along each dimension are represented.

Dimension
SV System

Task Audience Target Representation Medium

SHriMP Reverse
engineering,
maintenance

Expert
developer

Source code,
documentation,
static design-level
information,
medium Java
systems

2D graphs, interactive,
drill-down

Color
monitor

Tarantula Testing,
defect
location

Expert
developer

Source code, test
suite data, error
location

Line oriented
representation, color,
interactive, filtering,
selection

Color
monitor

IMSOvison Development,
reverse
engineering,
management

Expert
developer,
team
manager

Source code,
static design
information,
metrics, large OO
systems

Specialized visual
language, 3D color
objects, spatial
relationships, drill-down,
interactive, abstraction
mechanism

Immersive
virtual
environment

SeeSoft Fault location,
maintenance,
reengineering

Expert
developer

Source code,
execution data,
historical data

Line oriented
representation, color,
interactive, filtering,
selection

Color
monitor

Jinsight Optimization Expert Program bursts, Color coded line Color

developer Java, dynamically
collected

oriented, text,
interactive, filtering,
queries

monitor

activities related to reverse engineering, but also to
development, as both are able to represent aspects of
design-level information.

JInsight [6] is a tool for the analysis of running,
multithreaded Java program behavior. It allows the user
to deal with a large amount of trace information by
carefully selecting what and when they want the
information collected. The information collected is
associated with a particular running task. It can be
connected to a running program, collect the data, and then
disconnect, thereby starting the process all over. This tool
is an example that visualizes data about the software,
rather than the structure of the software.

As seen in table 2, these tools cover a broad spectrum
over the five dimensions of our framework. The
classification and description of the systems is by no
means complete. Many of the detailed attributes that
were covered by previous taxonomies are left out on
purpose. The goal of these examples is to highlight some
issues that motivated our revisiting the issues of
taxonomies for software visualization systems.

Each tool is built to support different tasks, the
choice of features being motivated by this issue. We
especially emphasize the fact that some of these tools are
able to represent the structure of the software (e.g.,
SHriMP, IMSOvision), others represent data about the
software execution (e.g, JInsight, Tarantula), the actual
source code layout (e.g., SeeSoft, Tarantula), or multiple
types of information (e.g., IMSOvision, SeeSoft). Due to
the different nature of the representation, different
mediums are chosen (e.g., VE, color monitors). Another
important issue to note is that while some tools use
general visual representations (e.g., timelines, graphs – in
Jinsight and SHriMP), others define special visual
metaphors (e.g., 3D objects, colored pixel-based lines – in
IMSovision and SeeSoft).

5. Conclusions and future work

This paper revisits the issues of defining a taxonomy
of software visualization systems. By realigning these
taxonomies with the perspective of current software
engineering problems we identify open research issues
and how research in cognitive psychology and
information visualization can aid the field of software
visualization. Additionally, the framework we present
highlights the strengths of individual tools and techniques
with respect to their application to software engineering
tasks.

This framework also puts into perspective the work
being done on visualizing execution trace data with that
of visualizing design and structural aspects of software.
These visualization approaches are quite different because
they address very different problems. The target of these
systems is from different sources, one being large

amounts of numerical data, the other source code. One
approach uses specialized data visualization methods; the
other must develop graph based and metaphoric visual
representations.

The ultimate goal of this work is to iterate the key
tasks for maintenance and development and determine the
sets of dimensional values that are most appropriate. This
would present us with a space of possible visualization
systems with respect to software engineering tasks. As
new visualization methods, mechanisms, and mediums
become available, this ontology can serve as means to
determine were they could be of use to software
visualization.

References

[1] Baecker, R., DiGiano, C., and Marcus, A., "Software
Visualization for Debugging", Communications of the ACM,
vol. 40, no. 4, April 1997, pp. 44-54.

[2] Burd, E. L., Chan, P. S., Duncan, I. M. M., Munro, M., and
Young, P., "Improving Visual Representations of Code",
University of Durham, Technical Report 1996.

[3] Card, S. K., Mackinlay, J., and Shneiderman, B., Readings in
Information Visualization Using Vision to Think, San Francisco,
CA, Morgan Kaufmann, 1999.

[4] Chi, E. H., Barry, P., Riedl, J. T., and Konstan, J., "A
spreadsheet approach to information visualization", in
Proceedings of Information Visualization Symposium '97, 1997,
pp. 17-24,116.

[5] De Pauw, W., Kimelman, D., and Vlissides, J., "Visualizing
Object-Oriented Software Execution", in Software Visualization,
Stasko, J., Dominque, J., Brown, M., and Price, B., Eds.,
Cambridge, MA MIT Press, 1998, pp. 329-346.

[6] De Pauw, W., Mitchell, N., Robillard, M., Sevitsky, G., and
Srinivasan, H., "Drive-by Analysis of Running Programs", in
Proceedings of ICSE 2001 Workshop on Software
Visualization, Toronto, Ontario, Canada, 2001, pp. 17-22.

[7] Eick, S., "Maintenance of Large Systems", in Software
Visualization, Stasko, J., Dominque, J., Brown, M., and Price,
B., Eds., London MIT Press, 1998, pp. 315-328.

[8] Eick, S., Steffen, J. L., and Summer, E. E., "Seesoft - A Tool
For Visualizing Line Oriented Software Statistics", IEEE
Transactions on Software Engineering, vol. 18, no. 11,
November 1992, pp. 957-968.

[9] Grundy, J. and Hosking, J. G., "High-level Static and
Dynamic Visualisation of Software Architectures", in
Proceedings of IEEE Symposium on Visual Languages (VL
'00), Seattle, Washington, September, 10-14 2000.

[10] Jones, J. A., Harrold, M. J., and Stasko, J. T.,
"Visualization for Fault Localization", in Proceedings of ICSE
2001 Workshop on Software Visualization, Toronto, Ontario,
Canada, 2001, pp. 71-75.

[11] Levoy, M., "Spreadsheet for images", Computer Graphics,
vol. 28, 1994, pp. 139-146.

[12] MacKinlay, J. D., "Automating the design of graphical
presentation of relational information", ACM Transaction on
Graphics, vol. 5, no. 2, April 1986, pp. 110-141.

[13] Maletic, J. I., Leigh, J., and Marcus, A., "Visualizing
Software in an Immersive Virtual Reality Environment", in
Proceedings of ICSE'01 Workshop on Software Visualization,
Toronto, Ontario, Canada, May 12-13 2001, pp. 49-54.

[14] Maletic, J. I., Leigh, J., Marcus, A., and Dunlap, G.,
"Visualizing Object Oriented Software in Virtual Reality", in
Proceedings of International Workshop on Program
Comprehension (IWPC01), Toronto, Canada, May 21-13 2001,
pp. 26-35.

[15] Myers, B. A., "Taxonomies of Visual Programming and
Program Visualization", Journal of Visual Languages and
Computing, vol. 1, no. 1, March 1990, pp. 97-123.

[16] Parker, G., Franck, G., and Ware, C., "Visualition of Large
Nested Graphs in 3D: Navigation and Interaction", Journal of
Visual Languages and Computing, vol. 9, 1998, pp. 299-317.

[17] Price, B. A., Baecker, R. M., and Small, I. S., "A Principled
Taxonomy of Software Visualization", Journal of Visual
Languages and Computing, vol. 4, no. 2, 1993, pp. 211-266.

[18] Price, B. A., Baecker, R. M., and Small, I. S., "An
Introduction to Software Visualization", in Software
Visualization, Stasko, J., Dominque, J., Brown, M., and Price,
B., Eds., London, England MIT Press, 1998, pp. 4-26.

[19] Rao, R. and Card, S. K., "Exploring large tables with the
table lens", in Proceedings of ACM Conference on Human
Factors in Computing Systems (CHI'95), 1995, pp. 403-404.

[20] Reiss, S. P., "Bee/Hive: A Software Visualization Back
End", in Proceedings of ICSE 2001 Workshop on Software
Visualization, Toronto, Ontario, Canada, 2001, pp. 44-48.

[21] Roberts, J., "Display Models for Visualization", in
Proceedings of International Conference on Information
Visualization (IV'99), London, England, 1999.

[22] Roman, G.-C. and Cox, K. C., "A Taxonomy of Program
Visualization Systems", IEEE Computer, vol. 26, no. 12,
December 1993, pp. 11-24.

[23] Shneiderman, B., "The Eyes Have It: A Task by Data Type
Taxonomy for Information Visualizations", in Proceedings of
IEEE Visual Languages, 1996, pp. 336-343.

[24] Stasko, J. T. and Patterson, C., "Understanding and
Characterizing Software Visualization Systems", in Proceedings
of IEEE Workshop on Visual Languages, Seattle, WA,
September 1992, pp. 3-10.

[25] Storey, M.-A. D., Best, C., and Michaud, J., "SHriMP
Views: An Interactive Environment for Exploring Java
Programs", in Proceedings of International Workshop on
Program Comprehension (IWPC'01), Toronto, Ontario, Canada,
May 12-13 2001, pp. 111-112.

[26] Tufte, E. R., The Visual Display of Quantitative
Information, Graphic Press, 1983.

[27] Tweedie, L., "Characterizing interactive externalizations",
in Proceedings of Conference on Human Factors in Computing
Systems (CHI '97), 1997, pp. 375-382.

[28] Ware, C., Information Visualization. Perception for Design,
Morgan Kaufmann Publishers, 2000.

[29] Ware, C. and Franck, G., "Evaluating stereo and motion
cues for visualizing information nets in three dimensions", ACM
Transaction on Graphics, vol. 15, no. 2, April 1996, pp. 121-
140.

[30] Ware, C., Gobrecht, C., and Paton, M., "Dynamic
adjustment of stereo display parameters", IEEE Transactions on
Systems, Man and Cybernetics, vol. 28, no. 1, 1998, pp. 56-65.

[31] Wise, J. A., Thomas, J. J., Pennock, K., Lantrip, D., Pottier,
M., Schur, A., and Crow, V., "Visualizing the non-visual:
Spatial analysis and interaction with information from text
documents", in Proceedings of Information Visualization
Symposium (InfoVis'95), 1995, pp. 51-58.

[32] Wiss, U., Carr, D., and Jonsson, H., "Evaluating Three-
Dimensional Information Visualization Designs A Case Study
of Three Designs", in Proceedings of International Conference
on Information Visualisation, London, England, July 29-31
1998.

	1. Introduction
	2. A Reference Model for Visualization
	3. Dimensions of Software Visualization
	3.1. Tasks
	3.2. Audience
	3.3. Target
	3.4. Representation
	3.5. Medium

	4. Mapping Software Visualization Systems
	5. Conclusions and future work
	References

