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ABSTRACT 
The paper describes the results of applying semantic 
(versus structural) methods to the problems of software 
maintenance and program comprehension.  Here, the 
focus is on tools to assist programmer to understand large 
legacy software systems.  The method applied, Latent 
Semantic Analysis, is a corpus-based statistical method 
for inducing and representing aspects of the meanings of 
words and passages (of natural language) reflective in 
their usage.  This methodology is assessed for application 
to the domain of software components (i.e., source code 
and its accompanying documentation).  The intent of 
applying Latent Semantic Analysis to software 
components is to automatically induce a specific semantic 
meaning of a given component.  Here, LSA is used as the 
basis to group software components, across files, to assist 
in program comprehension.  This clustering is used in the 
understanding of a nontrivial software system, namely a 
version of Mosaic. 
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1. INTRODUCTION 

 
The tasks of maintenance and reengineering of an 

existing software system require a great deal of effort to 
be spent on understanding the source code to determine 
the behavior, organization, and architecture of the 
software not reflected in documentation.  The software 
engineer must examine both the structural aspect of the 
source code (e.g., programming language syntax) and the 
nature of the problem domain (e.g., comments, 
documentation, and variable names) to extract the 
information needed to fully understand any part of the 
system [2, 5, 9, 13, 14].  In the research presented here, 
the later aspect is being examined and tools to help 
automate this part of the understanding process are being 
investigated.  Experiments using an advanced information 

retrieval technique, Latent Semantic Analysis (LSA), to 
identify similarities between pieces of source code are 
being conducted.  The objective of this research is to 
determine how well such a method can be used to support 
aspects of program understanding, comprehension, and 
reengineering of software systems. 
 

The reasoning for choosing LSA as underlying method 
in this research is discussed in the following section.  The 
results of applying this method to a reasonable sized 
software system (Mosaic) are then presented.  The 
measures derived by LSA are used to cluster the source 
code (at a function level) into semantically similar groups.  
A number of metrics are defined based on these similarity 
measures to help support program understanding.  
Examples of how these metrics help support the program 
understanding process are also given.  Finally, 
conclusions to these experiments are presented along with 
future research directions. 
 
2. ADVANTAGES OF USING LSA 

 
There are a variety of information retrieval methods 

including traditional approaches [6] such as signature 
files, inversion, and clustering.  Other methods that try to 
capture more information about documents to achieve 
better performance include those using parsing, syntactic 
information, and natural language processing techniques; 
methods using neural networks; and Latent Semantic 
Analysis (also referred to as Latent Semantic Indexing). 
 

LSA relies on a Single Value Decomposition (SVD) 
[12, 15] of a matrix (word × context) derived from a 
corpus of natural text that pertains to knowledge in the 
particular domain of interest.  The corpus is used as 
training set and LSA builds a semantic space.  The result 
is that each word is represented as a vector in this space.  
The similarity of any two words, any two passages, or any 
word and any text passage, are computed by measures on 
their vectors.  Often the cosine of the contained angle 
between the vectors in the semantic space is used as the 



 

 

degree of qualitative similarity of meaning [3].  The 
length of vectors is also useful as a measure. 

One of the criticisms of this method, when applied to 
natural language texts is that it does not make use of word 
order, syntactic relations, or morphology.  But very good 
representations and results are derived without this 
information [1].  This characteristic is very well suited to 
the domain of software, both source code and internal 
documentation, because much of the informal abstraction 
of the problem concept may be embodied in names of key 
operators and operands of the implementation, word 
ordering has little meaning.  Internal documentation is 
also commonly written in a subset of English [5] that may 
also lend itself to the methods utilized by LSA.  Also, 
LSA does not utilize a grammar or a predefined 
vocabulary.  This makes automation much simpler and 
supports programmer defined variable names that have 
implied meanings (e.g., avg) yet are not in the English 
language vocabulary.  The meanings are derived from the 
usage rather then a predefined dictionary.  This is a stated 
advantage over using a traditional natural language 
approach, such as in [4, 5], were a (subset) grammar for 
the English language must be developed. 
 
3. EXPERIMENTS WITH LSA 

 
Experiments into how domain knowledge is embodied 

within software are being investigated in an empirical 
manner.  The work presented here focuses on using the 
vector representations to compare components (at a 
specific level of granularity) and classify them into 
clusters of semantically similar concepts.  A simple 
parsing of the source code is done to break the source into 
the proper granularity (documents) and remove any non-
essential symbols.  Comment delimiters and many 
syntactical tokens are removed as they add little or no 
semantic knowledge of the problem domain. 
 

Given a software system, it can be broken down into a 
set of individual documents to be used as input to LSA.  
To cluster the source code documents they are grouped 
based on similarity value λ with respect to the other 
documents, in the semantic space.  A minimal spanning 
tree (MST) [7] algorithm is used to cluster the documents 
based on a given threshold for the similarity measure.  A 
document is added to a cluster if it is at least λ similar to 
any one of the other documents in the cluster.  The 
similarity measures are computed by the cosine of the two 
vector representations of the source code documents.  The 
similarity value therefore has a domain of [-1, 1], with the 
value 1 being "exactly" similar. 
 

The granularity of the source code input to LSA is of 
interest at this point.  In the applications of LSA to natural 
language corpuses, typically a paragraph or section is 
used as the granularity of a document.  Sentences tend to 
be too small and chapters too large.  In source code, the 
analogous concepts are function, structure, module, file, 
class, etc.  Obviously, statement granularity is too small 

and a file containing multiple functions is too large.  In 
previous experiments the function and class declaration 
levels have been used [10].  Two readily available 
software systems were used as data for the experiments: 
LEDA [8] (Library for Efficient Data structures and 
Algorithms) and MINIX [16] (Operating System).  The 
work supported the concept of using LSA as a similarity 
measure for clustering software at a given level of 
granularity, namely a class or function level.  The clusters 
in the LEDA library reflected class categories, that is, 
groups of related classes that function on similar concepts 
or solve common types of problems.  In the MINIX 
system, the clusters are quite different due to the different 
methodology and programming language utilized.  In this 
case, the clusters represented sets of documents that 
represent a class or abstract data type.  Basically, the 
larger clusters are typically composed of one or two data 
structure definitions and a number of functions that utilize 
these data structures. 
 

While these experiments support the use of LSA to 
source code, the fact is that both of these software 
systems are very well written, documented, and 
organized.  Also, neither of these systems is very large.  
In general, one does not need complex tools to help in 
understanding these types of software systems.  In order 
to test these methods usefulness to the problem, a more 
real world type software system is now investigated. 
 
4. EXPERIMENTS WITH MOSAIC 

 
To determine how well LSA supports the program 

understanding process, the source code for version 2.7 of 
Mosaic [11] was used as training input into LSA and 
clustered using the described methods.  The resulting 
partitioning was used to help support understanding of 
portions of the source code.  Mosaic is written in C and 
was programmed and developed by multiple individuals.  
No single coding standard is observed over the entire 
system and often different standards are used within a 
given file.  Little or no external documentation on the 
design or architecture is available and the internal 
documentation is often scarce or missing.  In short, 
Mosaic reflects the kinds of realities often found in 
commercial software due to the many external issues that 
affect a software development project. 
 
4.1. Clustering Mosaic 

 
Table 1 gives the size of the Mosaic system (269 files 

containing approximately 95 KLOC).  A semantic space, 
using a dimensionality of 350, was generated by LSA for 
the 2,347 documents.  The documents were then 
clustered, based on a cosine value of 0.7 (this value 
corresponds to a 45 degree angle between the vectors) or 
greater into 655 groupings. 
 

A number of scenarios were envisioned that require 
such understanding of a large software system with little 



 

 

• A software system is a set of files  
S = {f1, f2, …, fn}. 

• The Total number of files in the system is  
n = |S|. 

• A file is a set of documents fi = {d1,i, d2,i,.., dki,i}, 
all fi’s in S are disjoint. 

• A document is any contiguous lines of source 
code and/or text.  Typically, a document is a 
function, block of declarations, definitions, or 
a class declaration including its associated 
internal documentation (comments). 

• The set of all documents in a system is noted 
as Sd = f1 ∩ f2 ∩ … ∩ fn 

• The Total number of documents in a system is 
then | Sd |. 

• A cluster, ck, is a set of documents from the 
files of S such that ck ⊆  Sd.   

• Let C be the set of all clusters, ck, such that C 
is a set of disjoint clusters that represent a 
complete partition of all documents in S. 

 

Figure 1.  Definitions 

existing external documentation.  The system may be 
under maintenance by a person with little knowledge of 
the system or a reengineering of the system may be 
planned.  In such a case, the software is written in C, a 
reengineering of the system in another language, say C++, 
may be planned.  In fact, such a reengineering of Mosaic 
actually took place and current versions are written in 
C++. 

 
The clustering of the source code gives another 

dimension to view relationships among pieces of source 
code.  Grouping functions and structures together within a 
file often represent some semantic relationship within the 
grouping.  For instance, an abstract data type (ADT) is 
often encapsulated in the C language within an 
implementation file (.c) and an associated specification 
file (.h).  Unfortunately, not all software systems are 
written with good habits of coupling and cohesion in 
mind.  In legacy systems, it is quite common that little (or 
no) semantic encapsulation is used, concepts are spread 
over multiple files, and files contain multiple concepts. 
With this in mind, a number of simple metrics can be 
developed that give some heuristics about the semantic 
cohesion of a particular file or cluster based on the 
intersections of documents.  The following defines a set 
of metrics that is utilized to assist in program 
understanding based on the given clustering and file 
organization of a software system. 
 
4.2. Metrics on Clusters and Files 

 
There are a number of terms that require some explicit 

definitions: software systems, files, documents, and 
clusters.  These definitions are given in figure 1.  With 
these definitions a set of metrics are defined.  The 
following is a set of measures and metrics that pertain to 
clusters of source code documents:  
• Size of cluster, ck, is the number of documents in a 

cluster, noted | ck |. 
• Number of files that contain a document from a given 

cluster is | FDCk | where  
FDCk = {f ∈  S | ck ∩ f ≠ �} 

• Semantic cohesion of a cluster with respect to files is  

SCCFk = 
|c|

1|FDC|
1

k

k −− . 

• Number of documents in a cluster from a given file is 
|DCFi,k| where  

DCFi,k = {d | d ∈  ck ∩ fi, ck ∈  C, fi ∈  S}. 

• Degree of relationship of a given file with a given 
cluster is Ri,k = |DCFi,k| / | fi |. 

 
Below is a set of measures and metrics that deal 

directly with files of the software system: 
• Size of a file, fi, is the number of documents in the 

file, noted | fi |. 
• Number of clusters that contain a document from a 

given file is |CDFi| where  
CDFi = {ck ∈  C | ck ∩ fi ≠ �} 

• Semantic cohesion of a file with respect to clusters is  

SCFCi = 
|f|

1|CDF|
1

i

i −− . 

• Number of files related by a cluster to a given file, fi, 
is | RFi | where  

RFi = {f � S | ck ∩ f ∩ fi ≠ �, ck ∈  C }. 
• Number of files strongly related by a cluster to a 

given file, fi, is:  
SRFi = | RFi | - max | ck | - 1 and ck ∈  LCk 

where LCk is the set of clusters that contain documents 
from fi and have a low semantic cohesion with respect to 
files. LCk = FDCk ∩ {cj ∈  C | SCCFj < �} where � is an 
empirically established threshold. 
 
4.3. Understanding Mosaic 

 
The above measures and metrics were computed for 

the clustering of Mosaic that was generated.  The 
resulting values are used to identify groups of documents 
in the software system that should be investigated as a 
whole.  The following guidelines are utilized in 
assessment of clusters and files: 
• Semantic cohesion of a file with respect to clusters 

(SCFCi) should be high. 

Number of Files 269 
LOC 95,000 
Vocabulary  5,114 
Number of Parsed 
Documents  

2,347 

Number of 
Clusters Produced 

655 

Table 1.  Vitals for Mosaic. 



 

 

• Number of files strongly related by a cluster to a 
given file (SRFi) should be low. 

• Semantic cohesion of a cluster with respect to files 
(SCCFk) should be high. 

• Degree of relationship of a given file with a given 
cluster (Ri,k) should be high. 

 
Each of the following examples presents a group of 

files and clusters that are related.  Files that satisfy the 
above-mentioned conditions were considered for further 
manual inspection.  This step, selecting the files that are 

candidates for manual inspection, can be automated and 
reduces the amount of manual work needed to understand 
the software system. 
 
4.3.1. Example: DrawingArea and the Widget 
Structure 

The first example shows a group of related files (see 
table 2) that were selected based on the file names, a 
natural choice that an analyst would do when starting to 
understand a software system.  The goal of the experiment 
was to see if using the measurements and values of the 
metrics, one could identify the right related files.  
DrawingArea.c was the first selected file, and the existing 
measurements indicated that it is strongly related with 3 
other files (see table 2).  The degree of relationship with 
cluster c1 is very low (see table 4), so the related files 
through that cluster were not considered for further 
analysis.  The measurements and the metrics (table 2, 3 
and 4) indicated DrawingArea.h and DrawingAreaP.h as 
strong candidates to analysis.  Given the names of the 
files, this is not a surprising finding.  The in-depth 
analysis revealed that indeed the three strongly related 
files implement a well-defined abstract data type – 

drawing area.  A form of information hiding was even 
used by using a separate file namely, DrawingAreaP.h, to 
implement some “private” functions. 
 

Two of the functions in DrawingArea.c connect the 
files with over 200 other files, through cluster c1.  Closer 

inspection revealed that the two functions are in fact 
constructors and have only two lines of code.  This makes 
them similar with many other constructor-type functions, 

so the induced relationships were ignored.  The values of 
the metrics in table 2 and table 4 would have already 
eliminated this relationship.  The analysis confirmed that 
this was a coincidental relationship. 
 

The values also indicated HTML.c as the best 
candidate among the rest of the related files.  The analysis 
indicated that the documents linking these files use the 
same global constructs (user defined types and identifiers) 
and the ADTs that they relate to could be in fact 
specializations of the same parent (or abstract) class. 
 

Although the degree of relationship (see table 4) 
between the documents in HTML.c and the identified 
clusters was small, these findings indicated that HTML.c 
should be also analyzed in conjunction with 
DrawingArea.c and its closely related files.  Using the 
same procedure and considering HTML.c as the starting 
file, it is found that the HTMLWidget.c file is also related 
to the concepts derived previously.  Finally, it was 
concluded that these five files contain definitions for a 

general (abstract) widget structure (ADT or class) and 
implementation of at least two specializations of it: 
drawingAreaClassRec and htmlClassRec. 
 
4.3.2. Example: Chunk Handling and Flexible Arrays 

In this experiment a file was selected at random, 
among those with very high semantic cohesion with 
respect to clusters, containing between 5 and 20 
documents.  The selected file was HTChunk.c, with 8 
documents and a cohesion value of 0.88 in table 5.  From 
this point on a similar procedure with the one described in 

File (fi) Cluster Ri,k 
DrawingArea.c c1 0.18 
DrawingArea.c c327 0.73 
DrawingArea.c c331 0.09 
DrawingArea.h c327 1.00 

DrawingAreaP.h c327 1.00 
HTML.c c1 0.01 
HTML.c c327 0.01 
HTML.c c331 0.01 

Table 4.  Degree of relationship of a 
given file with a given cluster 

File (fi) | fi | SCFCi SRFi 
HTChunk.c 8 0.88 3 
HTChunk.h 1 1.00 3 
HTAAFile.c 5 0.60 16 
HTNews.c 55 0.49 17 

Table 5.  Metrics on the important files 
related to HTChunk.c 

Cluster SCCFk 
c327 0.64 
c331 0.50 
c1 0.81 

Table 3.  Semantic 
cohesion of clusters 
with respect to files 

File (fi) | fi | SCFCi SRFi 
DrawingArea.c 11 0.73 3 
DrawingArea.h 1 1.00 2 
DrawingAreaP.h 1 1.00 2 
HTML.c 91 0.69 14 

Table 2.  Metrics on the important files 
related to DrawingArea.c 



 

 

first example is followed.  The metrics indicated a highly 
cohesive set of files: HTChunk.h, HTChunk.c, and 
HTAAFile.c.   
 

Upon further analysis it was also found that the files 
HTChunk.c and HTChunk.h implement an ADT that 
deals with flexible arrays called chunks (a form of lists).  
The generality of the structure determined the other 
(weaker) relationships with the other files.  This 

suggested that those files implement similar structures 
(lists) but using other concepts (e.g. files and news 
articles rather than chunks). 
 

The study of the related files and clusters indicated 
that cluster c466 should be analyzed separately.  The 
related functions from HTAAFile.c and HTNews.c were 
found to implement in fact similar structures to chunks 
(i.e., lists).  This example showed that, solely using the 
metrics, groups of strongly related and cohesive files 
could be identified and that they implemented a general 
structure (i.e., chunks).  The metrics helped to identify 
files that contained similar structures (i.e., lists).  The fact 
that Mosaic was written by several authors lead to 
interesting facts such as the fact that often, different 
authors implemented their own list processing module, 
instead of using one general one, across the system. 
 
4.3.3. Example: Cluster c466, the Password and Access 
Control 

In this example a cluster was chosen as starting 
element in the analysis.  The starting cluster is c466 that 
was indicated in the previous example as candidate for 
separate analysis.  The cluster spans over 14 highly 
related and cohesive files.  The manual analysis revealed 
that 10 of these files implemented the basic functions and 
structures to handle passwords and access control.  The 
other files were using these functions and structures.  This 
time, the names of the files would not have indicated the 
relationships.  Due to limited space, the actual metrics are 
not shown here.  Similar experiments were done on 
clusters selected solely based on the value of their 
cohesion metric. 

 
5. CONCLUSIONS  

 
LSA seems to be a promising tool to assist in 

supporting some of the activities of the program 
understanding process.  The methods described here can 

be used not only as an initial step, but also in an 
interactive way throughout the software understanding 
process.  Once a module is identified and understood, the 
similarities that have been initially discarded can be 
reanalyzed, considering the new knowledge gleaned from 
the process.   
 

The next step in the research will be to expand the sets 
of software systems being examined.  It will most likely 
be prudent to select some very orthogonal domains and 
some closely inter related domains to assess the 
application of LSA.  Each domain must have a number of 
example components with varying degrees of internal and 
external documentation, which will give a good spectrum 
of the particular domain and result in a valid 
representation of the domain knowledge.  Assessing the 
relative quality and validity of the constructed semantic 
spaces is the main goal of this research.  Combining this 
method with structural methods is an important direction.  
These methods will not produce excellent results without 
integrating other types of features.  Coupling this with 
data and control flow information, for example, will work 
to address both dimensions of the program understanding 
process. 
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