

SUPPORT FOR SOFTWARE MAINTENANCE
USING LATENT SEMANTIC ANALYSIS

JONATHAN I. MALETIC

ANDRIAN MARCUS

Division of Computer Science
The Department of Mathematical Sciences

The University of Memphis
Campus Box 526429 Memphis TN 38152, USA
Phone: (901) 678-3140. Fax: (901) 678-2480

jmaletic@memphis.edu
amarcus@memphis.edu

ABSTRACT
The paper describes the results of applying semantic
(versus structural) methods to the problems of software
maintenance and program comprehension. Here, the
focus is on tools to assist programmer to understand large
legacy software systems. The method applied, Latent
Semantic Analysis, is a corpus-based statistical method
for inducing and representing aspects of the meanings of
words and passages (of natural language) reflective in
their usage. This methodology is assessed for application
to the domain of software components (i.e., source code
and its accompanying documentation). The intent of
applying Latent Semantic Analysis to software
components is to automatically induce a specific semantic
meaning of a given component. Here, LSA is used as the
basis to group software components, across files, to assist
in program comprehension. This clustering is used in the
understanding of a nontrivial software system, namely a
version of Mosaic.

KEYWORDS
Software Maintenance, Program Understanding, Latent
Semantic Analysis

1. INTRODUCTION

The tasks of maintenance and reengineering of an

existing software system require a great deal of effort to
be spent on understanding the source code to determine
the behavior, organization, and architecture of the
software not reflected in documentation. The software
engineer must examine both the structural aspect of the
source code (e.g., programming language syntax) and the
nature of the problem domain (e.g., comments,
documentation, and variable names) to extract the
information needed to fully understand any part of the
system [2, 5, 9, 13, 14]. In the research presented here,
the later aspect is being examined and tools to help
automate this part of the understanding process are being
investigated. Experiments using an advanced information

retrieval technique, Latent Semantic Analysis (LSA), to
identify similarities between pieces of source code are
being conducted. The objective of this research is to
determine how well such a method can be used to support
aspects of program understanding, comprehension, and
reengineering of software systems.

The reasoning for choosing LSA as underlying method
in this research is discussed in the following section. The
results of applying this method to a reasonable sized
software system (Mosaic) are then presented. The
measures derived by LSA are used to cluster the source
code (at a function level) into semantically similar groups.
A number of metrics are defined based on these similarity
measures to help support program understanding.
Examples of how these metrics help support the program
understanding process are also given. Finally,
conclusions to these experiments are presented along with
future research directions.

2. ADVANTAGES OF USING LSA

There are a variety of information retrieval methods

including traditional approaches [6] such as signature
files, inversion, and clustering. Other methods that try to
capture more information about documents to achieve
better performance include those using parsing, syntactic
information, and natural language processing techniques;
methods using neural networks; and Latent Semantic
Analysis (also referred to as Latent Semantic Indexing).

LSA relies on a Single Value Decomposition (SVD)
[12, 15] of a matrix (word × context) derived from a
corpus of natural text that pertains to knowledge in the
particular domain of interest. The corpus is used as
training set and LSA builds a semantic space. The result
is that each word is represented as a vector in this space.
The similarity of any two words, any two passages, or any
word and any text passage, are computed by measures on
their vectors. Often the cosine of the contained angle
between the vectors in the semantic space is used as the

degree of qualitative similarity of meaning [3]. The
length of vectors is also useful as a measure.

One of the criticisms of this method, when applied to
natural language texts is that it does not make use of word
order, syntactic relations, or morphology. But very good
representations and results are derived without this
information [1]. This characteristic is very well suited to
the domain of software, both source code and internal
documentation, because much of the informal abstraction
of the problem concept may be embodied in names of key
operators and operands of the implementation, word
ordering has little meaning. Internal documentation is
also commonly written in a subset of English [5] that may
also lend itself to the methods utilized by LSA. Also,
LSA does not utilize a grammar or a predefined
vocabulary. This makes automation much simpler and
supports programmer defined variable names that have
implied meanings (e.g., avg) yet are not in the English
language vocabulary. The meanings are derived from the
usage rather then a predefined dictionary. This is a stated
advantage over using a traditional natural language
approach, such as in [4, 5], were a (subset) grammar for
the English language must be developed.

3. EXPERIMENTS WITH LSA

Experiments into how domain knowledge is embodied

within software are being investigated in an empirical
manner. The work presented here focuses on using the
vector representations to compare components (at a
specific level of granularity) and classify them into
clusters of semantically similar concepts. A simple
parsing of the source code is done to break the source into
the proper granularity (documents) and remove any non-
essential symbols. Comment delimiters and many
syntactical tokens are removed as they add little or no
semantic knowledge of the problem domain.

Given a software system, it can be broken down into a
set of individual documents to be used as input to LSA.
To cluster the source code documents they are grouped
based on similarity value λ with respect to the other
documents, in the semantic space. A minimal spanning
tree (MST) [7] algorithm is used to cluster the documents
based on a given threshold for the similarity measure. A
document is added to a cluster if it is at least λ similar to
any one of the other documents in the cluster. The
similarity measures are computed by the cosine of the two
vector representations of the source code documents. The
similarity value therefore has a domain of [-1, 1], with the
value 1 being "exactly" similar.

The granularity of the source code input to LSA is of
interest at this point. In the applications of LSA to natural
language corpuses, typically a paragraph or section is
used as the granularity of a document. Sentences tend to
be too small and chapters too large. In source code, the
analogous concepts are function, structure, module, file,
class, etc. Obviously, statement granularity is too small

and a file containing multiple functions is too large. In
previous experiments the function and class declaration
levels have been used [10]. Two readily available
software systems were used as data for the experiments:
LEDA [8] (Library for Efficient Data structures and
Algorithms) and MINIX [16] (Operating System). The
work supported the concept of using LSA as a similarity
measure for clustering software at a given level of
granularity, namely a class or function level. The clusters
in the LEDA library reflected class categories, that is,
groups of related classes that function on similar concepts
or solve common types of problems. In the MINIX
system, the clusters are quite different due to the different
methodology and programming language utilized. In this
case, the clusters represented sets of documents that
represent a class or abstract data type. Basically, the
larger clusters are typically composed of one or two data
structure definitions and a number of functions that utilize
these data structures.

While these experiments support the use of LSA to
source code, the fact is that both of these software
systems are very well written, documented, and
organized. Also, neither of these systems is very large.
In general, one does not need complex tools to help in
understanding these types of software systems. In order
to test these methods usefulness to the problem, a more
real world type software system is now investigated.

4. EXPERIMENTS WITH MOSAIC

To determine how well LSA supports the program

understanding process, the source code for version 2.7 of
Mosaic [11] was used as training input into LSA and
clustered using the described methods. The resulting
partitioning was used to help support understanding of
portions of the source code. Mosaic is written in C and
was programmed and developed by multiple individuals.
No single coding standard is observed over the entire
system and often different standards are used within a
given file. Little or no external documentation on the
design or architecture is available and the internal
documentation is often scarce or missing. In short,
Mosaic reflects the kinds of realities often found in
commercial software due to the many external issues that
affect a software development project.

4.1. Clustering Mosaic

Table 1 gives the size of the Mosaic system (269 files

containing approximately 95 KLOC). A semantic space,
using a dimensionality of 350, was generated by LSA for
the 2,347 documents. The documents were then
clustered, based on a cosine value of 0.7 (this value
corresponds to a 45 degree angle between the vectors) or
greater into 655 groupings.

A number of scenarios were envisioned that require
such understanding of a large software system with little

• A software system is a set of files
S = {f1, f2, …, fn}.

• The Total number of files in the system is
n = |S|.

• A file is a set of documents fi = {d1,i, d2,i,.., dki,i},
all fi’s in S are disjoint.

• A document is any contiguous lines of source
code and/or text. Typically, a document is a
function, block of declarations, definitions, or
a class declaration including its associated
internal documentation (comments).

• The set of all documents in a system is noted
as Sd = f1 ∩ f2 ∩ … ∩ fn

• The Total number of documents in a system is
then | Sd |.

• A cluster, ck, is a set of documents from the
files of S such that ck ⊆ Sd.

• Let C be the set of all clusters, ck, such that C
is a set of disjoint clusters that represent a
complete partition of all documents in S.

Figure 1. Definitions

existing external documentation. The system may be
under maintenance by a person with little knowledge of
the system or a reengineering of the system may be
planned. In such a case, the software is written in C, a
reengineering of the system in another language, say C++,
may be planned. In fact, such a reengineering of Mosaic
actually took place and current versions are written in
C++.

The clustering of the source code gives another

dimension to view relationships among pieces of source
code. Grouping functions and structures together within a
file often represent some semantic relationship within the
grouping. For instance, an abstract data type (ADT) is
often encapsulated in the C language within an
implementation file (.c) and an associated specification
file (.h). Unfortunately, not all software systems are
written with good habits of coupling and cohesion in
mind. In legacy systems, it is quite common that little (or
no) semantic encapsulation is used, concepts are spread
over multiple files, and files contain multiple concepts.
With this in mind, a number of simple metrics can be
developed that give some heuristics about the semantic
cohesion of a particular file or cluster based on the
intersections of documents. The following defines a set
of metrics that is utilized to assist in program
understanding based on the given clustering and file
organization of a software system.

4.2. Metrics on Clusters and Files

There are a number of terms that require some explicit

definitions: software systems, files, documents, and
clusters. These definitions are given in figure 1. With
these definitions a set of metrics are defined. The
following is a set of measures and metrics that pertain to
clusters of source code documents:
• Size of cluster, ck, is the number of documents in a

cluster, noted | ck |.
• Number of files that contain a document from a given

cluster is | FDCk | where
FDCk = {f ∈ S | ck ∩ f ≠ �}

• Semantic cohesion of a cluster with respect to files is

SCCFk =
|c|

1|FDC|
1

k

k −− .

• Number of documents in a cluster from a given file is
|DCFi,k| where

DCFi,k = {d | d ∈ ck ∩ fi, ck ∈ C, fi ∈ S}.

• Degree of relationship of a given file with a given
cluster is Ri,k = |DCFi,k| / | fi |.

Below is a set of measures and metrics that deal

directly with files of the software system:
• Size of a file, fi, is the number of documents in the

file, noted | fi |.
• Number of clusters that contain a document from a

given file is |CDFi| where
CDFi = {ck ∈ C | ck ∩ fi ≠ �}

• Semantic cohesion of a file with respect to clusters is

SCFCi =
|f|

1|CDF|
1

i

i −− .

• Number of files related by a cluster to a given file, fi,
is | RFi | where

RFi = {f � S | ck ∩ f ∩ fi ≠ �, ck ∈ C }.
• Number of files strongly related by a cluster to a

given file, fi, is:
SRFi = | RFi | - max | ck | - 1 and ck ∈ LCk

where LCk is the set of clusters that contain documents
from fi and have a low semantic cohesion with respect to
files. LCk = FDCk ∩ {cj ∈ C | SCCFj < �} where � is an
empirically established threshold.

4.3. Understanding Mosaic

The above measures and metrics were computed for

the clustering of Mosaic that was generated. The
resulting values are used to identify groups of documents
in the software system that should be investigated as a
whole. The following guidelines are utilized in
assessment of clusters and files:
• Semantic cohesion of a file with respect to clusters

(SCFCi) should be high.

Number of Files 269
LOC 95,000
Vocabulary 5,114
Number of Parsed
Documents

2,347

Number of
Clusters Produced

655

Table 1. Vitals for Mosaic.

• Number of files strongly related by a cluster to a
given file (SRFi) should be low.

• Semantic cohesion of a cluster with respect to files
(SCCFk) should be high.

• Degree of relationship of a given file with a given
cluster (Ri,k) should be high.

Each of the following examples presents a group of

files and clusters that are related. Files that satisfy the
above-mentioned conditions were considered for further
manual inspection. This step, selecting the files that are

candidates for manual inspection, can be automated and
reduces the amount of manual work needed to understand
the software system.

4.3.1. Example: DrawingArea and the Widget
Structure

The first example shows a group of related files (see
table 2) that were selected based on the file names, a
natural choice that an analyst would do when starting to
understand a software system. The goal of the experiment
was to see if using the measurements and values of the
metrics, one could identify the right related files.
DrawingArea.c was the first selected file, and the existing
measurements indicated that it is strongly related with 3
other files (see table 2). The degree of relationship with
cluster c1 is very low (see table 4), so the related files
through that cluster were not considered for further
analysis. The measurements and the metrics (table 2, 3
and 4) indicated DrawingArea.h and DrawingAreaP.h as
strong candidates to analysis. Given the names of the
files, this is not a surprising finding. The in-depth
analysis revealed that indeed the three strongly related
files implement a well-defined abstract data type –

drawing area. A form of information hiding was even
used by using a separate file namely, DrawingAreaP.h, to
implement some “private” functions.

Two of the functions in DrawingArea.c connect the
files with over 200 other files, through cluster c1. Closer

inspection revealed that the two functions are in fact
constructors and have only two lines of code. This makes
them similar with many other constructor-type functions,

so the induced relationships were ignored. The values of
the metrics in table 2 and table 4 would have already
eliminated this relationship. The analysis confirmed that
this was a coincidental relationship.

The values also indicated HTML.c as the best
candidate among the rest of the related files. The analysis
indicated that the documents linking these files use the
same global constructs (user defined types and identifiers)
and the ADTs that they relate to could be in fact
specializations of the same parent (or abstract) class.

Although the degree of relationship (see table 4)
between the documents in HTML.c and the identified
clusters was small, these findings indicated that HTML.c
should be also analyzed in conjunction with
DrawingArea.c and its closely related files. Using the
same procedure and considering HTML.c as the starting
file, it is found that the HTMLWidget.c file is also related
to the concepts derived previously. Finally, it was
concluded that these five files contain definitions for a

general (abstract) widget structure (ADT or class) and
implementation of at least two specializations of it:
drawingAreaClassRec and htmlClassRec.

4.3.2. Example: Chunk Handling and Flexible Arrays

In this experiment a file was selected at random,
among those with very high semantic cohesion with
respect to clusters, containing between 5 and 20
documents. The selected file was HTChunk.c, with 8
documents and a cohesion value of 0.88 in table 5. From
this point on a similar procedure with the one described in

File (fi) Cluster Ri,k
DrawingArea.c c1 0.18
DrawingArea.c c327 0.73
DrawingArea.c c331 0.09
DrawingArea.h c327 1.00

DrawingAreaP.h c327 1.00
HTML.c c1 0.01
HTML.c c327 0.01
HTML.c c331 0.01

Table 4. Degree of relationship of a
given file with a given cluster

File (fi) | fi | SCFCi SRFi
HTChunk.c 8 0.88 3
HTChunk.h 1 1.00 3
HTAAFile.c 5 0.60 16
HTNews.c 55 0.49 17

Table 5. Metrics on the important files
related to HTChunk.c

Cluster SCCFk
c327 0.64
c331 0.50
c1 0.81

Table 3. Semantic
cohesion of clusters
with respect to files

File (fi) | fi | SCFCi SRFi
DrawingArea.c 11 0.73 3
DrawingArea.h 1 1.00 2
DrawingAreaP.h 1 1.00 2
HTML.c 91 0.69 14

Table 2. Metrics on the important files
related to DrawingArea.c

first example is followed. The metrics indicated a highly
cohesive set of files: HTChunk.h, HTChunk.c, and
HTAAFile.c.

Upon further analysis it was also found that the files
HTChunk.c and HTChunk.h implement an ADT that
deals with flexible arrays called chunks (a form of lists).
The generality of the structure determined the other
(weaker) relationships with the other files. This

suggested that those files implement similar structures
(lists) but using other concepts (e.g. files and news
articles rather than chunks).

The study of the related files and clusters indicated
that cluster c466 should be analyzed separately. The
related functions from HTAAFile.c and HTNews.c were
found to implement in fact similar structures to chunks
(i.e., lists). This example showed that, solely using the
metrics, groups of strongly related and cohesive files
could be identified and that they implemented a general
structure (i.e., chunks). The metrics helped to identify
files that contained similar structures (i.e., lists). The fact
that Mosaic was written by several authors lead to
interesting facts such as the fact that often, different
authors implemented their own list processing module,
instead of using one general one, across the system.

4.3.3. Example: Cluster c466, the Password and Access
Control

In this example a cluster was chosen as starting
element in the analysis. The starting cluster is c466 that
was indicated in the previous example as candidate for
separate analysis. The cluster spans over 14 highly
related and cohesive files. The manual analysis revealed
that 10 of these files implemented the basic functions and
structures to handle passwords and access control. The
other files were using these functions and structures. This
time, the names of the files would not have indicated the
relationships. Due to limited space, the actual metrics are
not shown here. Similar experiments were done on
clusters selected solely based on the value of their
cohesion metric.

5. CONCLUSIONS

LSA seems to be a promising tool to assist in

supporting some of the activities of the program
understanding process. The methods described here can

be used not only as an initial step, but also in an
interactive way throughout the software understanding
process. Once a module is identified and understood, the
similarities that have been initially discarded can be
reanalyzed, considering the new knowledge gleaned from
the process.

The next step in the research will be to expand the sets
of software systems being examined. It will most likely
be prudent to select some very orthogonal domains and
some closely inter related domains to assess the
application of LSA. Each domain must have a number of
example components with varying degrees of internal and
external documentation, which will give a good spectrum
of the particular domain and result in a valid
representation of the domain knowledge. Assessing the
relative quality and validity of the constructed semantic
spaces is the main goal of this research. Combining this
method with structural methods is an important direction.
These methods will not produce excellent results without
integrating other types of features. Coupling this with
data and control flow information, for example, will work
to address both dimensions of the program understanding
process.

6. REFERENCES

[1] Berry, M. W., Dumais, S. T., and O’Brien, G. W.,

"Using Linear Algebra for Intelligent Information
Retrieval," SIAM: Review, vol. 37, no. 4, 1995, pp.
573-595.

[2] Biggerstaff, T. J., Mitbander, B. G., and Webster,
D. E., "Program Understanding and the Concept
Assignment Problem," CACM, vol. 37, no. 5, May
1994, pp. 72-82.

[3] Dumais, S. T., "Latent Semantic Indexing (LSI)
and TREC-2," in Proceedings of The Second Text
Retrieval Conference (TREC-2), March 1994, pp.
105-115.

[4] Etzkorn, L. H., Bowen, L. L., and Davis, C. G.,
"An Approach to Program Understanding by
Natural Language Understanding," Natural
Language Engineering, vol. 5, no. 1, 1999, pp. 1-
18.

[5] Etzkorn, L. H. and Davis, C. G., "Automatically
Identifying Reusable OO Legacy Code," IEEE
Computer, vol. 30, no. 10, October 1997, pp. 66-
72.

[6] Faloutsos, C. and Oard, D. W., "A Survey of
Information Retrieval and Filtering Methods,"
University of Maryland, Technical Report CS-TR-
3514, August 1995.

[7] Kruskal, J. B., "On the Shortest Spanning Subtree
of a Graph and the Traveling Salesman Problem,"
Proc. Amer. Math. Soc., vol. 7, no. 1, 1956, pp. 48-
50.

[8] LEDA, "The LEDA Manual Version R-3.7,"
LEDA Research, Webpage, Date Accessed:

File (fi) Cluster Ri,k
HTChunk.c c472 1.00
HTChunk.h c472 1.00
HTAAFile.c c472 0.40
HTAAFile.c c466 0.60
HTNews.c c472 0.02

Table 6. Degree of relationship of a
given file with a given cluster

4/29/1999, http://www.mpi-
sb.mpg.de/LEDA/index.html, 1998.

[9] Maletic, J. I. and Reynolds, R. G., "A Tool to
Support Knowledge Based Software Maintenance:
The Software Service Bay," in Proceedings of The
6th IEEE International Conference on Tools with
Artificial Intelligence, New Orleans LA, Nov. 6-9
1994, pp. 11-17.

[10] Maletic, J. I. and Valluri, N., "Automatic Software
Clustering via Latent Semantic Analysis," in
Proceedings of 14th IEEE International Conference
on Automated Software Engineering (ASE’99),
Cocoa Beach Florida, October 1999, pp. 251-254.

[11] Mosaic, "Mosaic Source Code v2.7b5," NCSA, ftp
site, Date Accessed: 4/12/2000,
ftp://ftp.ncsa.uiuc.edu/Mosaic/Unix/source/, 1996.

[12] Press, W. H., Teukolsky, S. A., Vetterling, W. T.,
and Flannery, B. P., Numerical Recipes in C, The

Art of Scientific Computing, Cambridge University
Press, 1996.

[13] Rist, R., "Plans in Program Design and
Understanding," in Proceedings of Workshop
Notes for AI & Automated Program
Understanding, AAAI-92, San Jose CA 1992, pp.
98-102.

[14] Soloway, E. and Ehrlich, K., "Empirical Studies of
Programming Knowledge," IEEE Transactions on
Software Engineering, vol. 10, no. 5, September
1984, pp. 595-609.

[15] Strang, G., Linear Algebra and its Applications,
2nd ed., Academic Press, 1980.

[16] Tanenbaum, A. and Woodhull, A., Operating
Systems Design and Implementation, Prentice Hall,
1997.

	ABSTRACT
	KEYWORDS
	1. INTRODUCTION
	2. ADVANTAGES OF USING LSA
	3. EXPERIMENTS WITH LSA
	4. EXPERIMENTS WITH MOSAIC
	4.1. Clustering Mosaic
	
	Number of Files

	4.2. Metrics on Clusters and Files
	4.3. Understanding Mosaic
	
	Ri,k

	4.3.1. Example: DrawingArea and the Widget Structure
	4.3.2. Example: Chunk Handling and Flexible Arrays
	4.3.3. Example: Cluster c466, the Password and Access Control

	5. CONCLUSIONS
	6. REFERENCES

