

Visualizing Object-Oriented Software in Virtual Reality

Jonathan I. Maletic1, Jason Leigh2, Andrian Marcus1, and Greg Dunlap1
 1Division of Computer Science 2Electronic Visualization Laboratory
 The Department of Mathematical Sciences University of Illinois at Chicago
 The University of Memphis MC154, 1120SEO, Dept. EECS
 Campus Box 523240 851 S. Morgan St.
 Memphis TN 38152-3240 Chicago IL 60607

jmaletic@memphis.edu, spiff@evl.uic.edu, amarcus@memphis.edu, gdunlap@memphis.edu

Abstract

The paper describes a system, Imsovision, for

visualizing object-oriented software in a Virtual Reality
Environment. A visualization language (COOL) is
defined that maps C++ source code to a visual
representation. Our aim is to develop a language with
few metaphors and constructs, but with the ability to
represent a variety of elements with no ambiguity or loss
of meaning. In addition, the visualization has to
maximally use the potential of the used media. The
design of the OO software system and its attributes are
represented in the visualization. Class information,
relationships between classes, and metric information is
displayed. VRML is used for the visualization and it is
rendered in the CAVE environment.

1. Introduction

Visual representations, both simple and complex, are

important for the comprehension and development of
large software systems. Notations such as UML are
becoming widely popular for the simple fact that they are
visual in nature and support quick understanding of long
natural language (or source code) passages. While these
types of notations allow for an abstraction of an existing
software system, they do not scale up well with respect to
comprehension. That is, it is quite difficult to “see” an
entire software system with these notations. They suffer
from the same cognitive related problems as source code.

The work here presents a software visualization system
that represents object-oriented software in a virtual reality
environment. The work is motivated by some of the
recent advances in the field of information visualization.
Our goal is to develop visualization tools that assist
software developers and maintainers to comprehend
software systems.

1.1. Background

Software visualization is the graphical display of

information about a software system. Software structure,
runtime behavior, and the code itself are properties of
software that is visualized. While there have been many
software visualization efforts, these have been limited in
both scope and application because the amount of
information to be included is far larger than can be
displayed. Visualization tools and environments display
information at various degrees of abstraction, from the
statement level to architecture of the system level. Many
of the existing software visualization systems concentrate
on program/algorithm animation and graph-based
visualization of static and dynamic relations between
software components. In addition, these tools concentrate
on representing various aspects of the source code (e.g.,
control flow, data flow, layout). In general, they are not
concerned with design and architecture aspects. A good
review of existing software visualization tools is
presented in [10].

Practical software visualization must provide tools to
select and display just the information of interest. It must
provide a quality visual display that is intuitive, has a
powerful abstraction capacity, and avoids information
(cognitive) overload. A practical software visualization
system can be achieved by focusing on abstractions.

In general, a software visualization system should
determine the abstraction level of the information it
depicts about the software system. It should use a visual
language or mapping to translate source code (and
possibly external documentation) into a visual
representation. The semantics of the language should be
unambiguous, natural, and learnable by the user. The
choice of mapping depends on the type of information it
represents and the media used in the representation. The
user tasks (i.e., manipulation, navigation, etc.) that the
system supports, including program comprehension tasks,
should be specified.

Since our system takes advantage of virtual reality
(VR), we now describe the differences between VR and
2D/3D display models.

1.2. Virtual Reality versus 3D and 2D

One has to make distinction between 3D and VR. A

user immersed in a Virtual Reality Environment (VE) can
always access external information (e.g., the actual source
code) without leaving the environment and the context of
the representation (e.g., using a palmtop or laptop).

While both representations offer the perception of
depth, only VEs allow the user to immerse oneself into
the representation. Also, this immersion allows the user
to take advantage of their stereoscopic vision. Stereopsis
can be a great benefit in disambiguating complex abstract
representations. It also helps the viewer to judge relative
size of objects and distances between objects. In 3D, you
have to move the view around to understand the diagram.

The work of Hubona, Shirah and Fout [11] suggests
that users' understanding of a 3D structure improves when
they can manipulate the structure. One of the defining
features of VR representations is the ability of the user to
manipulate the visualization, by being immersed in the
environment. The work of Ware and Franck [24]
indicates that displaying data in three dimensions instead
of two can make it easier for users to understand the data.
In addition the error rate in identifying routes in 3D
graphs is much smaller than 2D [23, 26]. They also show
that motion cues combined with stereo viewing can
substantially increase the size of the graph that can be
perceived [25]. VR combines stereopsis and motion. The
CyberNet system [8] shows that mapping large amount of
(dynamic) information to 3D representation is beneficial,
regardless of the type of metaphors (real or virtual) used.
CyberNet is used to map network services and
workstation information to a city landscape metaphor or
to a solar system metaphor, and geographical data to a
building metaphor. Real-life based metaphors have
advantages (using preexisting knowledge) but also
disadvantages (information overload and natural
limitations).

2. Imsovision

Imsovision (IMmersive SOftware VISualizatION) is a

system that supports program understanding and
development through software visualization (see figure
1). It uses a VE as the medium for visualization. Thus, it
makes use of all the special features of such environments
(e.g., 3D navigation, collaborative problem solving, etc.).

Also, it uses a specially designed visualization
language that maps source code into the VE. This
language, COOL, (Language for Comprehending OO
software) incorporates some of the features of UML and

allows for a natural representation of certain source code
level complexity metrics. COOL maps heterogeneous
data (classes, entities, relationships, and quantitative
information) to the visual metaphors. Metric information,
in this case, lines of code measures, is also incorporated
into the visualization. The size of the visual objects
represents the physical (or metric) sizes of the entities
they correspond to in the source code.

Currently, we do a large part of the mapping from
source code and documentation to VRML manually,
though some steps are partially automated. We are
currently constructing an automatic translation system
that given source code, generates the VRML source for
the visualization.

The remainder of this section describes the details of
our mapping language and the underlying concepts we
used in its design. The current features of Imsovision are
also described.

2.1. Mapping raw data to visualization

Mackinlay [18] defined two criteria to evaluate the

mapping of data to a visual metaphor: expressiveness and
effectiveness. These criteria were used in 2D mappings,
but can also be applied for 3D mappings.

Expressiveness refers to the capability of the metaphor
of visually representing all the information we desire to
visualize. For instance, if the number of visual
parameters available in the metaphor for displaying
information is fewer than the number of data values we

Virtual Reality
Environment

Figure 1. Architecture of Imsovision

Source Code & Design Documents

Compute
Metrics

Parse
Code

The user

wish to visualize, the metaphor will not be able to meet
the expressiveness criterion.

The relationship between data values and visual
parameters has to be a univocal relationship; otherwise, if
more than one data value is mapped onto the same visual
parameter, and then it will be impossible to distinguish
one value’s influence from the other. On the other hand,
there can always be visual parameters that are not used to
map information, as long as there is no need for them to
be utilized.

The second criterion, effectiveness, relates to the
efficacy of the metaphor as a means of representing the
information. Along the effectiveness dimension we can
further distinguish several criteria: effectiveness regarding
the information passing as visually perceived, regarding
aesthetic concerns, regarding optimization (e.g., number
of polygons needed to render the world).

In the case of quantitative data, not only the number of
visual parameters has to be sufficient to map all the data,
but also, they must be able to map the right data (i.e.,
there are visual parameters that are not able to map a
specific category of data; for instance, shape is not useful
for mapping quantitative data, while the size of a
metaphor is).

The second criterion is, as in the case above, the one of
effectiveness. This criterion implies the categorization of
the visual parameters according to its capabilities of
encoding the different types of information. Moreover,
this also implies categorizing the information according to
its importance so that information that is more important
can be encoded more efficiently when options must be
taken. This categorization of the importance of the
information has two expressions: one is an assigned
importance of the information in the context of a software
system; the other is a preference of the user. Nonetheless,
the user may choose to override this and define his own
importance of the data, according to his priorities when
visualizing a software system. For example, COOL gives
preference by default to the public members of a class,
versus the private ones.

In order to satisfy these criteria for the mapping, one
must have a solid data characterization. Data
characterization is usually the first step to understand a
phenomenon or system. Developing a taxonomy helps to
make sense of large amounts of information. This is why
COOL is based on the UML as it is well known and
widely used in the software community.

Although these characteristics of data apply mostly to
data visualization, they must be taken into consideration
in software visualization as well. The metaphors of
COOL are designed such that they maximize the amount
of data that can be represented with an accent on the
user’s information seeking goals.

The power of a visualization language is derived from
its semantic richness, simplicity, and level of abstraction.

Our aim is to develop a language with few metaphors and
constructs, but with the ability to represent a variety of
elements with no ambiguity or loss of meaning. In
addition, the visualization has to maximally use the
potential of the used media. Therefore, a good VR
representation will make use of all the navigation
possibilities in a 3D landscape and the fact that the user is
immersed in the environment, while maintaining a natural
feeling of the representation, and avoiding the information
overload.

An important aspect to be considered in defining a
visual language is the nature of its users. Our language is
designed for use by software developers with solid
knowledge of programming, program designs, and system
architecture; also, they must possess a reasonable ability
to abstract. Therefore, the metaphors in the language
should be simple, having a familiar form and
straightforward mapping to the source code.

The media type for the visual representation is also an
important factor to consider. In the case of VEs, there is
often a trade-off between levels of detail (i.e., resolution,
accuracy) and speed of navigation and/or the ability to
support collaborative work (i.e., network of two or more
VEs). We consider of primary importance the easy and
fast navigation ability, and the support for collaborative
work. If the metaphors are carefully chosen, the lack of
detail and accuracy of representation causes aesthetic
discomfort rather than loss of information and meaning.
Existing visualizations often lack in one or more of these
areas. They are either too complex to navigate, learn, or
they lose essential information by abstracting too much.

2.2. Visualizing object-oriented software

To view software systems in VR we have developed a

visual representation language. Version 1.0 of COOL is
summarized in tables 1 and 2. This language defines a
formal mapping from an Object Oriented language, such
as C++ or Java, to a visualization in VR. Currently, the
language only supports syntactic and other static features
of a program. We plan to incorporate semantic and
dynamic information in future versions of the
representation language. But, along with visualizing the
syntactic constructs of the program, metric information,
that gives clues to code complexity, is also represented in
the display language.

The basic construct in an OO language is the class; this
is realized as a platform in our visualizations. Platform
size is proportional to the size of the class (i.e., number of
methods and attributes). Thus, the platform size gives an
overall visual measure of the complexity of the class (in a
particular dimension). Attributes of a class are viewed as
spheres and member functions viewed as columns. The
height or size represents either lines of code or memory
size, respectively.

The different types of member functions are also color-
coded, white for constructors, green for accessors, and
purple for modifiers. The placement of the different types
of member functions reflect their usage, constructors are
grouped in the center, accessors are placed around these,
and modifiers are placed on the outer edges of the class
platform. The coloring and placement support quick
identification of the different concepts.

Table 1. Depicting entities in COOL. The size of

the entities reflects a metric size value.

Name Visualization Meaning

Platform

Class

Platform Size

 Number of
methods plus
the number of

attributes

Sphere

Attribute

Sphere Size

Type of
Attribute

White Column

Constructor
Member
Function

Green Column

Accessor
Member
Function

Purple Column

Modifier
Member
Function

Column Size

Logical Lines
of Code per

Method

Sphere/
Column
Location

Information
Hiding

To depict information hiding (public versus private),
private items are positioned on the bottom side of the
class (platform). This type of natural representation
reduces the cognitive overhead of the visualization. We
are also experimenting with using semi-transparent class
platforms. This allows one to see the private items and
also get a feel of what is directly below the class in the
overall landscape.

Table 2. Depicting relationships in COOL.

Name Visualization Meaning

Adjacency with
Shading

Inheritance

Yellow Stacks

Overloaded
Element

Aqua Flat Link

Dependency
Relationship

White Flat Link

Aggregation
Relationship

Relationships between classes are visualized in a

simple and natural manner. Class adjacency represents
inheritance. We view this as analogous to a metropolitan
area. There is a main city (Chicago) surrounded by a
number of suburbs (Evanston, Oak Park). The main city
is analogous to a base class and the suburbs are much like
derived classes. The shading of the derived classes is
lighter in color then the base class. Multiple-inheritance
is simply represented by having a derived class adjacent
to more then one base class, much like there are suburbs
that are adjacent to both St. Paul and Minneapolis.

Overloaded attributes and member functions have a
yellow top. This allows for quick inspection of the
amount of overloading done in a derived class.
Aggregation is represented as an aqua link, and
dependency is a white link, analogous to roads between
cities.

COOL is a multi-layered visualization language. The
first layer of abstraction is based on the idea of a class
diagram. Platforms represent classes, and links and
adjacency represent relationships between the classes.
This level is based directly on UML notation. The second
layer of abstraction is based on the metrics of size and

lines of code per function. The final level of abstraction,
dealing with functions, is the ability to drill down into the
source code from the visualization.

2.3. Navigation

In Imsovision, the visualizations are marked up in

VRML 1.0 [4], and therefore take advantage of the
navigation functionality that is incorporated into the
particular VE that renders the VRML source.

Imsovision is designed to use the CAVE (originally in
[7] and more recently described in [17]) as the primary
representation medium. The CAVE is a virtual reality
system where the display is a 10 foot-cubed room that is
rear-projected with stereoscopic images, creating the
illusion that 3D objects appear to co-exist with the user in
the room. A user dons a pair of lightweight liquid crystal
shutter glasses to resolve the stereoscopic imagery, and
holds a three-button ‘wand’ for three-dimensional
interaction with the virtual environment. An
electromagnetic tracking system attached to the shutter
glasses and the wand allows the CAVE to determine the
location and orientation of the user's head and hand at any
given moment in time. This information is used to
instruct the graphic drivers of the CAVE to render the
imagery from the point of view of the viewer. This way,
the user can physically walk around an object that appears
to exist in 3D in the middle of the CAVE. If the viewer
wants to look behind a virtual object, he walks around to
the back. If the viewer wants to look under an object in
the CAVE, they crouch down and physically look under
the virtual object. The wand contains three buttons and a
joystick that can be programmed for different features
depending on the application. Typically, the joystick is
used to navigate through environments that are larger than
the CAVE itself, such as in architectural walk-throughs.
The buttons can be used to change modes, or bring up
menus in the CAVE, or to ‘grab’ a virtual object.

A `fish tank' desktop system [1] would probably be the
best alternative for those wanting a currently affordable
hardware platform, allowing the user to see stereoscopic
images using a computer monitor and stereo shutter
glasses.

However, since the visualization is written using
VRML, a simple desktop computer can also be used as a
low-cost, non-immersive alternative to the CAVE. There
are a number of exiting VRML viewers that can be
utilized, such as Cosmo Player [6]. Such viewers are very
easy to use and come as plug-ins to existing html
browsers or as stand-alone applications. They offer a set
of easy-to-use navigation tools. Table 3 gives a summary

of these navigation tools. These tools allow the user to
move in different directions (X, Y, and Z).

Table 3. Navigation functions in VRML viewer.
Name Function

Go Move forward in z direction
Slide Move in the xy plane
Tilt Tilts the world

Rotate Rotates world in any direction
Zoom Allows zooming to a particular position
Pan Change position of the world
Seek Select and zoom to one item

By using these navigation tools that are inherent to
VEs that support VRML, we have complete navigation
inside the visualization. We can move into, back away
form, and turn left or right inside the world. We can also
move up or down, but more than that we can move the
world while keeping ourselves stationary, thus allowing
us to look at the private attributes of a system, and simply
move the mouse or wand to look at the public features of
the software system. Thus, the system allows us full
freedom of movement inside the virtual world. The user
can explore the subsystems that make up the complete
system, look at the system from different angles, and find
aspects of the system that would be hidden in a UML or
source code representation. Also, if the user gets
disoriented while traveling through the world, there are a
number of fixed camera positions that allow the user to go
to known positions in the world.

An immersive VE such as the CAVE offers even more
flexibility in navigation. If the user navigates through the
visualization, he/she can always look back or around to
see the part of the visualization that was traversed. With
the desktop viewer, the traversed part of the visualization
practically disappears from the perspective of the user.

It is common to have several people standing in the
CAVE at the same time. While only one person has the
correct stereo viewpoint and the ability to interact with
the environment, the other viewers can still see the virtual
world in 3D. In software development, collaboration and
teamwork are essential for the success of a project. All of
us have found that the ability to talk with co-workers who
are standing next to you is very important, and since the
CAVE does not isolate the user from the real world, it is
convenient to have these interactions. Current research
on tele-immersion [17], focuses on making remote
collaboration just as easy, or even better than standing
next to your collaborator. It allows each user to stand
within the shared virtual environment seeing a view of
that environment that is customized to their interests and
experience (see figure 2).

Figure 2. A remote user immersed in the VE
investigating a visualization of a software

system.

2.4. Support for user tasks

When creating an information visualization

application, it is important to identify primary tasks
before choosing an information visualization language
[27].

Our task analysis is based on Shneiderman [19], who
presents seven high level tasks that an information
visualization application should support. For evaluation
purposes, we must refine these into lower-level tasks as
done by Wiss, Carr, and Jonsson [27].

Overview: Gain an overview of the entire collection
of data that is represented. This is in fact one of the
strong features of COOL. It allows an overview of the
entire software system that is represented because it
makes use of all the dimensions in the VE. Its abstraction
power allows making better use of space than UML, for
example. The VE practically offers to the user unlimited
space for visualization. The lack of details on the
metaphors also is a feature that permits the user to zoom
out and see the entire system in a single view (see figure
4).

Zoom: Zoom in on items of interest. The VRML
viewer has zoom in and zoom out features, which allow
the user to see any part of the system in detail (see figure
6). The seek function also allows selection of a single
item in the visualization, and the system automatically
zooms in to that element. In addition, the user can
navigate through the visualization from one part of the
system to another at any zoom level. When zooming, it is
important that global context can be retained. Because in
the VE the user is immersed into the visualization and
he/she can look in any direction (up, down, back, and
forward) the global context is not lost. The VRML
browser allows for definition of fixed views of the entire

(or parts) of the visualizations. When zooming in on a
part of the system, it takes just one click to zoom out and
have the global view.

Filter: Filter out uninteresting items. Filtering by
removing parts of the visualization will necessarily
disturb the global context. Therefore, it is important to
see whether the design supports some kind of abstraction
of the removed parts. At this point COOL does not
directly support filtering. However, the design of COOL
is such that it emphasizes the most accessed features (e.g.,
public attributes and methods) by placing them in the
most natural positions on the visualization (e.g., on the
upper part of the platforms). The less accessed elements
(e.g., private attributes and methods) are placed in less
natural places (e.g., under the platforms). The navigation
power of the VE allows the user to switch the natural
orientation of the visualization, thus at any time, change a
less natural positioning into a more natural. Since the size
of the visual elements directly reflect some measure of the
complexity of the represented objects, the larger ones will
thus emphasize the most complex elements.

Details-on-demand: Select an item or group and get
details when needed. Getting details on a selected item is
usually implemented by the embedding application. As
mentioned before, the detail representation is of less
importance in COOL, priority was given to easy and fast
navigation and rendering. The visual metaphors are
designed such that there is no loss of meaning while
zooming in or out. In its current version, COOL supports
two types of detail-on-demand features. By placing the
cursor over a method that overloads another one in a
parent class, the overloaded method is highlighted.
Maintaining a constant link between these types of item
pairs would make the visualization too complex.

In addition, by right clicking on the mouse, we can
open up, in a new window, the source code that is behind
the visualization. This allows the user to look through the
software system and find the parts they want to look at
and when they comprehend the functionality of the
system, they can go and look at the source code directly.
Also, if a user activates (by clicking a mouse button) the
overloaded function (denoted by yellow) it will change
color, and the function that it overloaded will also
highlight letting the user map the overloaded function to
its parent function.

Relate: View relationships among items. For a
hierarchical data structure, it is necessary that the
visualization show parent-child relationships. This is one
of the most important features of COOL. Currently,
COOL supports three kinds of static relationships
between classes (i.e., dependency, aggregation,
inheritance - see table 2) and overloading between
methods.

History: Keep a history of actions to support undo,
replay, and progressive refinement. A visitation path

should be supported. The VRML viewer allows for
definitions of viewpoints. That is a set of attributes,
which describe the position of the camera, the light, and
the zoom level. These viewpoints can be saved and
reviewed. A sequence of such viewpoints can be played,
thus representing a path within the visualization, which
could represent the history.

Extract: Allow extraction of sub-collections and of
query parameters. This task concerns saving the current
state of the visualization. This is related only to the
application and the underlying data set. How the data is
visualized does not affect this. The extract task is
therefore excluded from our evaluation.

3. An example visualization

Figure 3 gives the UML class diagram for a simple

mail system. It represents an implementation for a voice

mail system to an internal phone system. There are
twelve classes that make up the system. The basic types
of relationships between classes are represented in this
system. The MailSystem has a number of Mailboxes and
also has an AdminMailbox. Mailsystem uses an
InputReader. Also, AdminMailbox is a specialization of
Mailbox.

Figures 4 and 5 are a visualization of this same
software system in Imsovision using a VRML browser.
The first thing one sees in this view is the large class at
the bottom. Its size tells us that it is larger, in terms of
methods and attributes, than any of the other classes. This
happens to be the String class. One may think this
unusual, but the class is very well developed and
overloads all the relational operators that are shown as a
clustering of green columns – (accessor functions).
Notice also that the string class mainly consists of
accessor functions rather than modifier functions (purple

MailSystem AdminMailbox

Mailbox InputReader

String

Message

MessageQueue

StringError

OutOfBounds

NegativeLen

Node

LinkedList

is a has part using

Figure 4. Visualization of a
MailSystem in Imsovision.

Figure 5. Another view of the
MailSystem looking from the opposite

direction as figure 4.

Figure 3. UML Class Diagram of
MailSystem.

columns on the outside edges). Another thing that is
easily seen in these view are the relative sizes of the
member functions and that large member functions are
easily discerned.

In figure 6, we see the simple class hierarchy of
Mailbox (center) and AdminMailbox (bottom right). Part
of the String class is seen below Mailbox. The yellow
shading on the tops of the member function in
AdminMailbox represents operator overloading.

As seen in the example, even in its current version,
Imsovision offers more information (e.g., size metrics,
methods and attribute types) to the user than the UML
diagram; it is more than just placing an UML diagram
into a 3D space. In addition, the VE allows for
representation of much more complex systems. A
software system with around 50 classes with similar
complexity level as the Mailbox system presented here, is
impossible to represent in a one-page UML diagram.

4. Uses of Imsovision

The primary function of Imsovision is for program

understanding in software development, maintenance, or
reengineering. A COOL visualization is built based on
the source code and provides to the developer insight in
the OO design of the software system. By understanding
the relationships between classes and the complexity of
them, the developer can decide where to concentrate the
development effort in the next step. In the case of
reengineering, Imsovision helps the user understand how
classes relate to each other and thus make it easier to map
source code to elements in the problem or solution
domain. In addition, the size metrics combined with the
coupling information will indicate to the software
engineer which classes need possible attention.

In addition to class information, Imsovision offers
information at the method and class attribute level. The
developer can easily assess the size/complexity of
attributes and methods. Different types of member
functions (e.g., constructors, accessors, modifiers) are
very easy to identify in the visualization. Also, with a
simple click, the user can see an entire chain of
overloaded function in a class hierarchy. The user can
also see all the accessible methods and attributes to a
particular object, by simply considering the public side of
the current plane in the VE. Usually it is not an easy task
to infer such information, which is extremely useful in the
development or in the usage of a class.

Much like UML, Imsovision is intended for use in the
design phase of the software development process. The
COOL visualization at this phase represents the
envisioned class diagram of the system, with the
relationship between classes, member functions of
different type (e.g., public, private, constructors,
destructors, accessors, modifiers, etc.), and attributes. As

the system is implemented, additional metric information
is incorporated into the visualization (e.g., size of
attributes, methods, and classes).

Imsovision can be used not only for program
understanding, but also for process management. In its
current version, Imsovision is able to capture the
development of the represented software system. One can
capture two representations of the system at two different
moments in time. By overlapping the two visualizations,
one could highlight the differences that describe the
evolution of the system. The columns associated with the
methods will be increased in size, showing the status of
their implementation. Newly added elements into the
visualization indicate design changes. After the source
code is written, a new visualization can be generated from
the source code and compared to the one created in the
design phase, thus observing if the mapping from design
to the source code was preserved or not.

Figure 6. The Mailbox and AdminMailbox

classes.

Figure 7. An inverted view of the LinkedList and

Node classes. The private data elements are
seen along with a private member function in
LinkedList. The class platform is also semi-

transparent in figure.

Since the COOL visualization is a “map” of the
software system, it also shows areas that are under
development, or need to be developed further. Additional
color information can be included to highlight such
aspects of the system.

In essence, Imsovision combines the advantages of
using UML diagrams and software metrics in one. As
mentioned, its design allows for inclusion of additional,
dynamic information about the system. Once that is
accomplished, Imsovision could successfully replace the
UML diagrams, the debugger, and the system dependency
graph. All these tools and the user tasks associated with
them will be integrated into the VE, were the developer
has noted advantages over traditional media (i.e., paper,
desktop).

5. Related work

Much of the work on software visualization is referred

to in a recent collection of papers put together by Stasko
[20]. This collection reflects the different categories of
software visualization including visual programming,
algorithm animation, program visualization, and
information visualization. Our work concentrates on
visualizing an entire software system for the purposes of
comprehending the systems design and architecture.

Closely related research to what is presented here is by
Knight [12-15] and Young [28]. This work involves
using virtual reality and 3D graphics to visualize software
systems. Knight’s work, Software City, uses a city
metaphor for visualization. The world is the entire
software system, a country is the directory structure, cities
are files, and so on. The Software World is a
semantically rich environment designed to be familiar to
humans. However, this feature comes at the expense of
underutilizing the 3D navigation features (e.g., it does not
consider navigation “under ground” or “in the sky”) and
at the expense of complexity (e.g., a building has too
many elements that represent detailed information, which
in fact decreases the level of abstraction and increases the
complexity of the visualization). In general, the
resemblance between a VE and a real world environment
makes the user feel more “at home”, but the complexity
increases too much and, if the VE represents some
abstract elements (e.g., source code), the mapping is
usually unnatural.

Other work that addresses the problems of visualizing
entire software systems to support program
comprehension and maintenance include SeeSoft [2, 3, 9],
VOGUE [16], Rigi [21, 22]] and InfoBUG [5]. The
SoftArch environment [10] has the power to represent
static and dynamic aspects of the software system at
various degrees of abstraction. It is one of the few
systems that allows for visualization at system
architecture level. As many other software visualization

systems suffers from the limitation of 2D media. The
GraphVisualizer3D [26] uses Graph Definition Language
to represent object-oriented software in 3D, using the
same underlying methods: modules of source code are
shown as atomic units, and relationships between modules
are depicted by connecting lines [23]. These approaches
do not make use of virtual reality environments and their
representations are in 2D and 3D forms.

6. Future work

As mentioned earlier, we are currently working on a

translator system that fully automates the conversion of
source code into a visualization. Our current prototype is
only partially automated. We are also working to fully
support differing syntactic features of the source code.
Integrating this with existing UML class diagrams is also
a major goal.

The long-term goals of this project are to build
additional features to support the following:

• Static visualization
• Dynamic visualization
• Collaborative problem solving (remote)
• Visualization of system evolution
• Support for representing reusable components

and design patterns
• Process and resource management

A number of new features that support static view of

the system are planned. Filtering, labeling, and various
additional drilldown features will be added. A number of
layout algorithms are being examined to best support the
display of the classes.

A number of features to support dynamic aspects of
the source code are planned. Data flow and control flow
aspects will be integrated into the visualization.
Highlighting parts of the system that are active over a
slow motion run of this system is envisioned. This will
act much like a debugger trace, but at a much higher level
of abstraction.

Features to support collaborative problems solving
within the VE will be of great benefit to large-scale
software development. Multiple developers can enter the
VE from the same or remote sites to address problems of
design, maintenance, or error correction. This type of
environment will also prove useful for explaining the
complexities of a software system to new team members.

The future version of Imsovision will be further
integrated into the software development process. The
representation of the software system will be updated as
each line of code is written or changed and saved.
Imsovision will be used not only as an understanding tool,
but also as a management tool. In a collaborative
environment (such as the CAVE), the project manager

will be able to see each developer at work. The manager
will be able to monitor what component the developer
working on, how much each component is complete, or
how much it has changed from the last version.

7. References

[1] Arthur, K. W., Booth, K. S., and Ware, C., "Evaluating 3D

task performance for fish tank virtual worlds", ACM
Transactions on Information Systems, vol. 11, no. 3,
July 1993, pp. 239-265.

[2] Ball, T. and Eick, S., "Visualizing Program Slices", in
Proceedings of IEEE Symposium on Visual
Languages, St. Louis, MO, 1994, pp. 288-295.

[3] Ball, T. and Eick, S., "Software Visualization in the Large",
Computer, vol. 19, no. 4, 1996, pp. 33-43.

[4] Bell, G., Parisi, A., and Pesce, M., "The Virtual Reality
Modeling Language Version 1.0 Specification",
Webpage,
http://www.vrml.org/VRML1.0/vrml10c.html, 1996.

[5] Chuah, M. C. and Eick, S., "Glyphs for Software
Visualization", in Proceedings of 5th International
Workshop on Program Comprehension, Dearborn, MI,
1997, pp. 183-191.

[6] CosmoPlayer, "Cosmo Software", Computer Associates,
Webpage, Date Accessed: 8/2000,
http://www.cai.com/cosmo/, 2000.

[7] Crus-Neira, C., Sandin, D., and Defanti, T., "Surround-
Screen Projection-Based Virtual Reality: The Desing
and Implementation of CAVE", in Proceedings of
SIGGRAPH93, 1993, pp. 135-142.

[8] Dos Santos, C. R., Gros, P., Abel, P., Loisel, D., Trichaud,
N., and Paris, J. P., "Mapping Information onto 3D
Virtual Worlds", in Proceedings of IEEE International
Conference on Information Visualization, London,
England, July 19-21 2000.

[9] Eick, S., "Graphically Displaying Text", Journal of
Computational and Graphical Statistics, vol. 3, no. 2,
1994, pp. 127-142.

[10] Grundy, J. and Hosking, J. G., "High-level Static and
Dynamic Visualisation of Software Architectures", in
Proceedings of IEEE Symposium on Visual
Languages, Seattle, Washington, September, 10-14
2000.

[11] Hubona, G. S., Shirah, G. W., and Fout, D. G., "3D Object
Recognition with Motion", in Proceedings of CHI'97,
1997, pp. 345-346.

[12] Knight, C. and Munro, M., "Comprehension with[in]
Virtual Environment Visualisations", in Proceedings
of Seventh International Workshop on Program
Comprehension, Pittsburgh, PA, 5-7 May 1999, pp. 4-
11.

[13] Knight, C. and Munro, M., "Visualising Software - A Key
Research Area", in Proceedings of International
Conference on Software Maintenance (ICSM99),
Oxford, England, 1999.

[14] Knight, C. and Munro, M., "Virtual but Visible Software",
in Proceedings of International Conference on

Information Visualisation (IV00), London, England,
July 19-21 2000.

[15] Knight, C., Munro, M., "Should Users Inhabit
Visualisations?", in Proceedings of Knowledge
Management Networking Workshop of WET ICE
2000, Washington, DC, 2000.

[16] Koike, H., "The Role of Another Spatial Dimension in
Software Visualization", ACM Transactions on
Information Systems, vol. 11, no. 3, 1993, pp. 266-
286.

[17] Leigh, J., Johnson, A. E., Brown, M., Sandin, D., and
Defanti, T. A., "Visualization in Teleimmersive
Environments", IEEE Computer,, vol. 32, no. 12,
December 1999, pp. 66-73.

[18] Mackinlay, J., "Automating the design of graphical
presentation of relational information", ACM
Transaction on Graphics, vol. 5, no. 2, April 1986, pp.
110-141.

[19] Shneiderman, B., "The Eyes Have It: A Task by Data Type
Taxonomy for Information Visualizations", in
Proceedings of IEEE Visual Languages, 1996, pp.
336-343.

[20] Stasko, J., Dominque, J., Brown, M., and Price, B.,
Software Visualization, MIT Press, 1998.

[21] Storey, M.-A. D., Fracchia, F. D., and Mueller, H. A.,
"Cognitive Design Elements to Support the
Construction of a Mental Model during Software
Visualization", in Proceedings of 5th International
Workshop on Program Comprehension, 1997.

[22] Storey, M.-A. D., Wong, K., and Muller, H. A., "On
Integrating Visualization Techniques for Effective
Software Exploration", in Proceedings of IEEE
Symposium on Information Visualization, Phoenix,
AR, 1997.

[23] Ware, C. and Franck, G., "Representing Nodes and Arcs in
3D Networks", in Proceedings of IEEE Conference on
Visual Languages, St. Louis, October 1994, pp. 189-
190.

[24] Ware, C. and Franck, G., "Viewing a Graph in a Virtual
Reality Display is Three Times as Good as a 2D
Diagram", in Proceedings of IEEE Visual Languages,
1994, pp. 182-183.

[25] Ware, C. and Franck, G., "Evaluating stereo and motion
cues for visualizing information nets in three
dimensions", ACM Transaction on Graphics, vol. 15,
no. 2, April 1996, pp. 121-140.

[26] Ware, C., Hui, D., and Franck, G., "Visualizing Object
Oriented Software in Three Dimensions", in
Proceedings of CASCON'93, Toronto, Ontario,
Canada, October 1993, pp. 612-620.

[27] Wiss, U., Carr, D., and Jonsson, H., "Evaluating Three-
Dimensional Information Visualization Designs A
Case Study of Three Designs", in Proceedings of
International Conference on Information
Visualisation, London, England, July 29-31 1998.

[28] Young, P. and Munro, M., "Visualising Software in Virtual
Reality", in Proceedings of 6th International
Workshop on Program Comprehension, Ischia, Italy,
1998, pp. 17-24.

	1. Introduction
	1.1. Background
	1.2. Virtual Reality versus 3D and 2D

	2. Imsovision
	2.1. Mapping raw data to visualization
	2.2. Visualizing object-oriented software
	2.3. Navigation
	2.4. Support for user tasks

	3. An example visualization
	4. Uses of Imsovision
	5. Related work
	6. Future work
	7. References

