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Abstract 

 
The paper describes a system, Imsovision, for 

visualizing object-oriented software in a Virtual Reality 
Environment.  A visualization language (COOL) is 
defined that maps C++ source code to a visual 
representation.  Our aim is to develop a language with 
few metaphors and constructs, but with the ability to 
represent a variety of elements with no ambiguity or loss 
of meaning.  In addition, the visualization has to 
maximally use the potential of the used media.  The 
design of the OO software system and its attributes are 
represented in the visualization.  Class information, 
relationships between classes, and metric information is 
displayed.  VRML is used for the visualization and it is 
rendered in the CAVE environment. 

 
 

1. Introduction 
 
Visual representations, both simple and complex, are 

important for the comprehension and development of 
large software systems.  Notations such as UML are 
becoming widely popular for the simple fact that they are 
visual in nature and support quick understanding of long 
natural language (or source code) passages.  While these 
types of notations allow for an abstraction of an existing 
software system, they do not scale up well with respect to 
comprehension.  That is, it is quite difficult to “see” an 
entire software system with these notations.  They suffer 
from the same cognitive related problems as source code. 

The work here presents a software visualization system 
that represents object-oriented software in a virtual reality 
environment.  The work is motivated by some of the 
recent advances in the field of information visualization.  
Our goal is to develop visualization tools that assist 
software developers and maintainers to comprehend 
software systems. 

1.1. Background 
 
Software visualization is the graphical display of 

information about a software system.  Software structure, 
runtime behavior, and the code itself are properties of 
software that is visualized.  While there have been many 
software visualization efforts, these have been limited in 
both scope and application because the amount of 
information to be included is far larger than can be 
displayed.  Visualization tools and environments display 
information at various degrees of abstraction, from the 
statement level to architecture of the system level.  Many 
of the existing software visualization systems concentrate 
on program/algorithm animation and graph-based 
visualization of static and dynamic relations between 
software components.  In addition, these tools concentrate 
on representing various aspects of the source code (e.g., 
control flow, data flow, layout).  In general, they are not 
concerned with design and architecture aspects.  A good 
review of existing software visualization tools is 
presented in [10]. 

Practical software visualization must provide tools to 
select and display just the information of interest.  It must 
provide a quality visual display that is intuitive, has a 
powerful abstraction capacity, and avoids information 
(cognitive) overload.  A practical software visualization 
system can be achieved by focusing on abstractions. 

In general, a software visualization system should 
determine the abstraction level of the information it 
depicts about the software system.  It should use a visual 
language or mapping to translate source code (and 
possibly external documentation) into a visual 
representation.  The semantics of the language should be 
unambiguous, natural, and learnable by the user.  The 
choice of mapping depends on the type of information it 
represents and the media used in the representation.  The 
user tasks (i.e., manipulation, navigation, etc.) that the 
system supports, including program comprehension tasks, 
should be specified. 



 

 

Since our system takes advantage of virtual reality 
(VR), we now describe the differences between VR and 
2D/3D display models.  

 
1.2. Virtual Reality versus 3D and 2D 

 
One has to make distinction between 3D and VR.  A 

user immersed in a Virtual Reality Environment (VE) can 
always access external information (e.g., the actual source 
code) without leaving the environment and the context of 
the representation (e.g., using a palmtop or laptop).   

While both representations offer the perception of 
depth, only VEs allow the user to immerse oneself into 
the representation.  Also, this immersion allows the user 
to take advantage of their stereoscopic vision.  Stereopsis 
can be a great benefit in disambiguating complex abstract 
representations.  It also helps the viewer to judge relative 
size of objects and distances between objects.  In 3D, you 
have to move the view around to understand the diagram. 

The work of Hubona, Shirah and Fout [11] suggests 
that users' understanding of a 3D structure improves when 
they can manipulate the structure.  One of the defining 
features of VR representations is the ability of the user to 
manipulate the visualization, by being immersed in the 
environment.  The work of Ware and Franck [24] 
indicates that displaying data in three dimensions instead 
of two can make it easier for users to understand the data.  
In addition the error rate in identifying routes in 3D 
graphs is much smaller than 2D [23, 26].  They also show 
that motion cues combined with stereo viewing can 
substantially increase the size of the graph that can be 
perceived [25].  VR combines stereopsis and motion.  The 
CyberNet system [8] shows that mapping large amount of 
(dynamic) information to 3D representation is beneficial, 
regardless of the type of metaphors (real or virtual) used.  
CyberNet is used to map network services and 
workstation information to a city landscape metaphor or 
to a solar system metaphor, and geographical data to a 
building metaphor.  Real-life based metaphors have 
advantages (using preexisting knowledge) but also 
disadvantages (information overload and natural 
limitations).   

 
2. Imsovision 

 
Imsovision (IMmersive SOftware VISualizatION) is a 

system that supports program understanding and 
development through software visualization (see figure 
1).  It uses a VE as the medium for visualization.  Thus, it 
makes use of all the special features of such environments 
(e.g., 3D navigation, collaborative problem solving, etc.). 

Also, it uses a specially designed visualization 
language that maps source code into the VE.  This 
language, COOL, (Language for Comprehending OO 
software) incorporates some of the features of UML and 

allows for a natural representation of certain source code 
level complexity metrics.  COOL maps heterogeneous 
data (classes, entities, relationships, and quantitative 
information) to the visual metaphors.  Metric information, 
in this case, lines of code measures, is also incorporated 
into the visualization.  The size of the visual objects 
represents the physical (or metric) sizes of the entities 
they correspond to in the source code. 

Currently, we do a large part of the mapping from 
source code and documentation to VRML manually, 
though some steps are partially automated.  We are 
currently constructing an automatic translation system 
that given source code, generates the VRML source for 
the visualization. 

The remainder of this section describes the details of 
our mapping language and the underlying concepts we 
used in its design.  The current features of Imsovision are 
also described. 

2.1. Mapping raw data to visualization 
 
Mackinlay [18] defined two criteria to evaluate the 

mapping of data to a visual metaphor: expressiveness and 
effectiveness.  These criteria were used in 2D mappings, 
but can also be applied for 3D mappings. 

Expressiveness refers to the capability of the metaphor 
of visually representing all the information we desire to 
visualize.  For instance, if the number of visual 
parameters available in the metaphor for displaying 
information is fewer than the number of data values we 
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wish to visualize, the metaphor will not be able to meet 
the expressiveness criterion. 

The relationship between data values and visual 
parameters has to be a univocal relationship; otherwise, if 
more than one data value is mapped onto the same visual 
parameter, and then it will be impossible to distinguish 
one value’s influence from the other.  On the other hand, 
there can always be visual parameters that are not used to 
map information, as long as there is no need for them to 
be utilized. 

The second criterion, effectiveness, relates to the 
efficacy of the metaphor as a means of representing the 
information.  Along the effectiveness dimension we can 
further distinguish several criteria: effectiveness regarding 
the information passing as visually perceived, regarding 
aesthetic concerns, regarding optimization (e.g., number 
of polygons needed to render the world). 

In the case of quantitative data, not only the number of 
visual parameters has to be sufficient to map all the data, 
but also, they must be able to map the right data (i.e., 
there are visual parameters that are not able to map a 
specific category of data; for instance, shape is not useful 
for mapping quantitative data, while the size of a 
metaphor is). 

The second criterion is, as in the case above, the one of 
effectiveness.  This criterion implies the categorization of 
the visual parameters according to its capabilities of 
encoding the different types of information.  Moreover, 
this also implies categorizing the information according to 
its importance so that information that is more important 
can be encoded more efficiently when options must be 
taken.  This categorization of the importance of the 
information has two expressions: one is an assigned 
importance of the information in the context of a software 
system; the other is a preference of the user.  Nonetheless, 
the user may choose to override this and define his own 
importance of the data, according to his priorities when 
visualizing a software system.  For example, COOL gives 
preference by default to the public members of a class, 
versus the private ones. 

In order to satisfy these criteria for the mapping, one 
must have a solid data characterization.  Data 
characterization is usually the first step to understand a 
phenomenon or system.  Developing a taxonomy helps to 
make sense of large amounts of information.  This is why 
COOL is based on the UML as it is well known and 
widely used in the software community. 

Although these characteristics of data apply mostly to 
data visualization, they must be taken into consideration 
in software visualization as well.  The metaphors of 
COOL are designed such that they maximize the amount 
of data that can be represented with an accent on the 
user’s information seeking goals.   

The power of a visualization language is derived from 
its semantic richness, simplicity, and level of abstraction.  

Our aim is to develop a language with few metaphors and 
constructs, but with the ability to represent a variety of 
elements with no ambiguity or loss of meaning.  In 
addition, the visualization has to maximally use the 
potential of the used media.  Therefore, a good VR 
representation will make use of all the navigation 
possibilities in a 3D landscape and the fact that the user is 
immersed in the environment, while maintaining a natural 
feeling of the representation, and avoiding the information 
overload.   

An important aspect to be considered in defining a 
visual language is the nature of its users.  Our language is 
designed for use by software developers with solid 
knowledge of programming, program designs, and system 
architecture; also, they must possess a reasonable ability 
to abstract.  Therefore, the metaphors in the language 
should be simple, having a familiar form and 
straightforward mapping to the source code. 

The media type for the visual representation is also an 
important factor to consider.  In the case of VEs, there is 
often a trade-off between levels of detail (i.e., resolution, 
accuracy) and speed of navigation and/or the ability to 
support collaborative work (i.e., network of two or more 
VEs).  We consider of primary importance the easy and 
fast navigation ability, and the support for collaborative 
work.  If the metaphors are carefully chosen, the lack of 
detail and accuracy of representation causes aesthetic 
discomfort rather than loss of information and meaning.  
Existing visualizations often lack in one or more of these 
areas.  They are either too complex to navigate, learn, or 
they lose essential information by abstracting too much.  

 
2.2. Visualizing object-oriented software 

 
To view software systems in VR we have developed a 

visual representation language.  Version 1.0 of COOL is 
summarized in tables 1 and 2.  This language defines a 
formal mapping from an Object Oriented language, such 
as C++ or Java, to a visualization in VR.  Currently, the 
language only supports syntactic and other static features 
of a program.  We plan to incorporate semantic and 
dynamic information in future versions of the 
representation language.  But, along with visualizing the 
syntactic constructs of the program, metric information, 
that gives clues to code complexity, is also represented in 
the display language. 

The basic construct in an OO language is the class; this 
is realized as a platform in our visualizations.  Platform 
size is proportional to the size of the class (i.e., number of 
methods and attributes).  Thus, the platform size gives an 
overall visual measure of the complexity of the class (in a 
particular dimension).  Attributes of a class are viewed as 
spheres and member functions viewed as columns.  The 
height or size represents either lines of code or memory 
size, respectively.   



 

 

The different types of member functions are also color-
coded, white for constructors, green for accessors, and 
purple for modifiers.  The placement of the different types 
of member functions reflect their usage, constructors are 
grouped in the center, accessors are placed around these, 
and modifiers are placed on the outer edges of the class 
platform.  The coloring and placement support quick 
identification of the different concepts. 

 
Table 1.  Depicting entities in COOL.  The size of 

the entities reflects a metric size value. 
 

Name Visualization Meaning 

Platform 
 

Class 

Platform Size 

 Number of 
methods plus 
the number of 

attributes 

Sphere 
 

Attribute 

Sphere Size 
 

Type of 
Attribute 

White Column 

 

Constructor 
Member 
Function 

Green Column 

 

Accessor 
Member 
Function 

Purple Column 

 

Modifier 
Member 
Function 

Column Size 

 

Logical Lines 
of Code per 

Method 

Sphere/ 
Column 
Location 

 

Information 
Hiding 

To depict information hiding (public versus private), 
private items are positioned on the bottom side of the 
class (platform).  This type of natural representation 
reduces the cognitive overhead of the visualization.  We 
are also experimenting with using semi-transparent class 
platforms.  This allows one to see the private items and 
also get a feel of what is directly below the class in the 
overall landscape. 

 
Table 2.  Depicting relationships in COOL. 

 
Name Visualization Meaning 

Adjacency with 
Shading 

 

Inheritance 

Yellow Stacks 
 

Overloaded 
Element 

Aqua Flat Link 

 

Dependency 
Relationship 

White Flat Link 

 
Aggregation 
Relationship 

 
Relationships between classes are visualized in a 

simple and natural manner.  Class adjacency represents 
inheritance.  We view this as analogous to a metropolitan 
area.  There is a main city (Chicago) surrounded by a 
number of suburbs (Evanston, Oak Park).  The main city 
is analogous to a base class and the suburbs are much like 
derived classes.  The shading of the derived classes is 
lighter in color then the base class.  Multiple-inheritance 
is simply represented by having a derived class adjacent 
to more then one base class, much like there are suburbs 
that are adjacent to both St. Paul and Minneapolis. 

Overloaded attributes and member functions have a 
yellow top.  This allows for quick inspection of the 
amount of overloading done in a derived class.  
Aggregation is represented as an aqua link, and 
dependency is a white link, analogous to roads between 
cities. 

COOL is a multi-layered visualization language.  The 
first layer of abstraction is based on the idea of a class 
diagram.  Platforms represent classes, and links and 
adjacency represent relationships between the classes.  
This level is based directly on UML notation.  The second 
layer of abstraction is based on the metrics of size and 



 

 

lines of code per function.  The final level of abstraction, 
dealing with functions, is the ability to drill down into the 
source code from the visualization.  

 
2.3. Navigation 

 
In Imsovision, the visualizations are marked up in 

VRML 1.0 [4], and therefore take advantage of the 
navigation functionality that is incorporated into the 
particular VE that renders the VRML source.   

Imsovision is designed to use the CAVE (originally in 
[7] and more recently described in [17]) as the primary 
representation medium.  The CAVE is a virtual reality 
system where the display is a 10 foot-cubed room that is 
rear-projected with stereoscopic images, creating the 
illusion that 3D objects appear to co-exist with the user in 
the room. A user dons a pair of lightweight liquid crystal 
shutter glasses to resolve the stereoscopic imagery, and 
holds a three-button ‘wand’ for three-dimensional 
interaction with the virtual environment. An 
electromagnetic tracking system attached to the shutter 
glasses and the wand allows the CAVE to determine the 
location and orientation of the user's head and hand at any 
given moment in time.  This information is used to 
instruct the graphic drivers of the CAVE to render the 
imagery from the point of view of the viewer.  This way, 
the user can physically walk around an object that appears 
to exist in 3D in the middle of the CAVE.  If the viewer 
wants to look behind a virtual object, he walks around to 
the back.  If the viewer wants to look under an object in 
the CAVE, they crouch down and physically look under 
the virtual object.  The wand contains three buttons and a 
joystick that can be programmed for different features 
depending on the application.  Typically, the joystick is 
used to navigate through environments that are larger than 
the CAVE itself, such as in architectural walk-throughs.  
The buttons can be used to change modes, or bring up 
menus in the CAVE, or to ‘grab’ a virtual object. 

A `fish tank' desktop system [1] would probably be the 
best alternative for those wanting a currently affordable 
hardware platform, allowing the user to see stereoscopic 
images using a computer monitor and stereo shutter 
glasses. 

However, since the visualization is written using 
VRML, a simple desktop computer can also be used as a 
low-cost, non-immersive alternative to the CAVE.  There 
are a number of exiting VRML viewers that can be 
utilized, such as Cosmo Player [6].  Such viewers are very 
easy to use and come as plug-ins to existing html 
browsers or as stand-alone applications.  They offer a set 
of easy-to-use navigation tools.  Table 3 gives a summary 

of these navigation tools.  These tools allow the user to 
move in different directions (X, Y, and Z). 

 

Table 3.  Navigation functions in VRML viewer. 
Name Function 

Go Move forward in z direction 
Slide Move in the xy plane 
Tilt Tilts the world 

Rotate Rotates world in any direction 
Zoom Allows zooming to a particular position 
Pan Change position of the world 
Seek Select and zoom to one item 

 

By using these navigation tools that are inherent to 
VEs that support VRML, we have complete navigation 
inside the visualization.  We can move into, back away 
form, and turn left or right inside the world.  We can also 
move up or down, but more than that we can move the 
world while keeping ourselves stationary, thus allowing 
us to look at the private attributes of a system, and simply 
move the mouse or wand to look at the public features of 
the software system.  Thus, the system allows us full 
freedom of movement inside the virtual world.  The user 
can explore the subsystems that make up the complete 
system, look at the system from different angles, and find 
aspects of the system that would be hidden in a UML or 
source code representation.  Also, if the user gets 
disoriented while traveling through the world, there are a 
number of fixed camera positions that allow the user to go 
to known positions in the world. 

An immersive VE such as the CAVE offers even more 
flexibility in navigation.  If the user navigates through the 
visualization, he/she can always look back or around to 
see the part of the visualization that was traversed.  With 
the desktop viewer, the traversed part of the visualization 
practically disappears from the perspective of the user. 

It is common to have several people standing in the 
CAVE at the same time.  While only one person has the 
correct stereo viewpoint and the ability to interact with 
the environment, the other viewers can still see the virtual 
world in 3D.  In software development, collaboration and 
teamwork are essential for the success of a project.  All of 
us have found that the ability to talk with co-workers who 
are standing next to you is very important, and since the 
CAVE does not isolate the user from the real world, it is 
convenient to have these interactions.  Current research 
on tele-immersion [17], focuses on making remote 
collaboration just as easy, or even better than standing 
next to your collaborator.  It allows each user to stand 
within the shared virtual environment seeing a view of 
that environment that is customized to their interests and 
experience (see figure 2). 



 

 

Figure 2.  A remote user immersed in the VE 
investigating a visualization of a software 

system. 
 

2.4. Support for user tasks 
 
When creating an information visualization 

application, it is important to identify primary tasks 
before choosing an information visualization language 
[27].   

Our task analysis is based on Shneiderman [19], who 
presents seven high level tasks that an information 
visualization application should support.  For evaluation 
purposes, we must refine these into lower-level tasks as 
done by Wiss, Carr, and Jonsson [27]. 

Overview:  Gain an overview of the entire collection 
of data that is represented.  This is in fact one of the 
strong features of COOL.  It allows an overview of the 
entire software system that is represented because it 
makes use of all the dimensions in the VE.  Its abstraction 
power allows making better use of space than UML, for 
example.  The VE practically offers to the user unlimited 
space for visualization.  The lack of details on the 
metaphors also is a feature that permits the user to zoom 
out and see the entire system in a single view (see figure 
4). 

Zoom:  Zoom in on items of interest.  The VRML 
viewer has zoom in and zoom out features, which allow 
the user to see any part of the system in detail (see figure 
6).  The seek function also allows selection of a single 
item in the visualization, and the system automatically 
zooms in to that element.  In addition, the user can 
navigate through the visualization from one part of the 
system to another at any zoom level.  When zooming, it is 
important that global context can be retained.  Because in 
the VE the user is immersed into the visualization and 
he/she can look in any direction (up, down, back, and 
forward) the global context is not lost.  The VRML 
browser allows for definition of fixed views of the entire 

(or parts) of the visualizations.  When zooming in on a 
part of the system, it takes just one click to zoom out and 
have the global view.   

Filter:  Filter out uninteresting items.  Filtering by 
removing parts of the visualization will necessarily 
disturb the global context.  Therefore, it is important to 
see whether the design supports some kind of abstraction 
of the removed parts.  At this point COOL does not 
directly support filtering.  However, the design of COOL 
is such that it emphasizes the most accessed features (e.g., 
public attributes and methods) by placing them in the 
most natural positions on the visualization (e.g., on the 
upper part of the platforms).  The less accessed elements 
(e.g., private attributes and methods) are placed in less 
natural places (e.g., under the platforms).  The navigation 
power of the VE allows the user to switch the natural 
orientation of the visualization, thus at any time, change a 
less natural positioning into a more natural.  Since the size 
of the visual elements directly reflect some measure of the 
complexity of the represented objects, the larger ones will 
thus emphasize the most complex elements.   

Details-on-demand:  Select an item or group and get 
details when needed.  Getting details on a selected item is 
usually implemented by the embedding application.  As 
mentioned before, the detail representation is of less 
importance in COOL, priority was given to easy and fast 
navigation and rendering.  The visual metaphors are 
designed such that there is no loss of meaning while 
zooming in or out.  In its current version, COOL supports 
two types of detail-on-demand features.  By placing the 
cursor over a method that overloads another one in a 
parent class, the overloaded method is highlighted.  
Maintaining a constant link between these types of item 
pairs would make the visualization too complex.   

In addition, by right clicking on the mouse, we can 
open up, in a new window, the source code that is behind 
the visualization.  This allows the user to look through the 
software system and find the parts they want to look at 
and when they comprehend the functionality of the 
system, they can go and look at the source code directly.  
Also, if a user activates (by clicking a mouse button) the 
overloaded function (denoted by yellow) it will change 
color, and the function that it overloaded will also 
highlight letting the user map the overloaded function to 
its parent function.   

Relate:  View relationships among items.  For a 
hierarchical data structure, it is necessary that the 
visualization show parent-child relationships.  This is one 
of the most important features of COOL.  Currently, 
COOL supports three kinds of static relationships 
between classes (i.e., dependency, aggregation, 
inheritance - see table 2) and overloading between 
methods.  

History:  Keep a history of actions to support undo, 
replay, and progressive refinement.  A visitation path 



 

 

should be supported.  The VRML viewer allows for 
definitions of viewpoints.  That is a set of attributes, 
which describe the position of the camera, the light, and 
the zoom level.  These viewpoints can be saved and 
reviewed.  A sequence of such viewpoints can be played, 
thus representing a path within the visualization, which 
could represent the history.   

Extract:  Allow extraction of sub-collections and of 
query parameters.  This task concerns saving the current 
state of the visualization.  This is related only to the 
application and the underlying data set.  How the data is 
visualized does not affect this.  The extract task is 
therefore excluded from our evaluation.   

 
3. An example visualization 

 
Figure 3 gives the UML class diagram for a simple 

mail system.  It represents an implementation for a voice 

mail system to an internal phone system.  There are 
twelve classes that make up the system.  The basic types 
of relationships between classes are represented in this 
system.  The MailSystem has a number of Mailboxes and 
also has an AdminMailbox.  Mailsystem uses an 
InputReader.  Also, AdminMailbox is a specialization of 
Mailbox.  

Figures 4 and 5 are a visualization of this same 
software system in Imsovision using a VRML browser.  
The first thing one sees in this view is the large class at 
the bottom.  Its size tells us that it is larger, in terms of 
methods and attributes, than any of the other classes.  This 
happens to be the String class.  One may think this 
unusual, but the class is very well developed and 
overloads all the relational operators that are shown as a 
clustering of green columns – (accessor functions).  
Notice also that the string class mainly consists of 
accessor functions rather than modifier functions (purple 

MailSystem AdminMailbox 

Mailbox InputReader 

String 

Message 

MessageQueue 

StringError 

OutOfBounds 

NegativeLen 

Node 

LinkedList 

is a has part using

Figure 4.  Visualization of a 
MailSystem in Imsovision. 

Figure 5.  Another view of the 
MailSystem looking from the opposite 

direction as figure 4. 

Figure 3.  UML Class Diagram of 
MailSystem. 



 

 

columns on the outside edges).  Another thing that is 
easily seen in these view are the relative sizes of the 
member functions and that large member functions are 
easily discerned. 

In figure 6, we see the simple class hierarchy of 
Mailbox (center) and AdminMailbox (bottom right).  Part 
of the String class is seen below Mailbox.  The yellow 
shading on the tops of the member function in 
AdminMailbox represents operator overloading.   

As seen in the example, even in its current version, 
Imsovision offers more information (e.g., size metrics, 
methods and attribute types) to the user than the UML 
diagram; it is more than just placing an UML diagram 
into a 3D space.  In addition, the VE allows for 
representation of much more complex systems.  A 
software system with around 50 classes with similar 
complexity level as the Mailbox system presented here, is 
impossible to represent in a one-page UML diagram. 

 
4. Uses of Imsovision 

 
The primary function of Imsovision is for program 

understanding in software development, maintenance, or 
reengineering.  A COOL visualization is built based on 
the source code and provides to the developer insight in 
the OO design of the software system.  By understanding 
the relationships between classes and the complexity of 
them, the developer can decide where to concentrate the 
development effort in the next step.  In the case of 
reengineering, Imsovision helps the user understand how 
classes relate to each other and thus make it easier to map 
source code to elements in the problem or solution 
domain.  In addition, the size metrics combined with the 
coupling information will indicate to the software 
engineer which classes need possible attention. 

In addition to class information, Imsovision offers 
information at the method and class attribute level.  The 
developer can easily assess the size/complexity of 
attributes and methods.  Different types of member 
functions (e.g., constructors, accessors, modifiers) are 
very easy to identify in the visualization.  Also, with a 
simple click, the user can see an entire chain of 
overloaded function in a class hierarchy.  The user can 
also see all the accessible methods and attributes to a 
particular object, by simply considering the public side of 
the current plane in the VE.  Usually it is not an easy task 
to infer such information, which is extremely useful in the 
development or in the usage of a class. 

Much like UML, Imsovision is intended for use in the 
design phase of the software development process.  The 
COOL visualization at this phase represents the 
envisioned class diagram of the system, with the 
relationship between classes, member functions of 
different type (e.g., public, private, constructors, 
destructors, accessors, modifiers, etc.), and attributes.  As 

the system is implemented, additional metric information 
is incorporated into the visualization (e.g., size of 
attributes, methods, and classes). 

Imsovision can be used not only for program 
understanding, but also for process management.  In its 
current version, Imsovision is able to capture the 
development of the represented software system.  One can 
capture two representations of the system at two different 
moments in time.  By overlapping the two visualizations, 
one could highlight the differences that describe the 
evolution of the system.  The columns associated with the 
methods will be increased in size, showing the status of 
their implementation.  Newly added elements into the 
visualization indicate design changes.  After the source 
code is written, a new visualization can be generated from 
the source code and compared to the one created in the 
design phase, thus observing if the mapping from design 
to the source code was preserved or not. 

 
Figure 6.  The Mailbox and AdminMailbox 

classes. 
 

 
Figure 7.  An inverted view of the LinkedList and 

Node classes.  The private data elements are 
seen along with a private member function in 
LinkedList.  The class platform is also semi-

transparent in figure. 



 

 

Since the COOL visualization is a “map” of the 
software system, it also shows areas that are under 
development, or need to be developed further.  Additional 
color information can be included to highlight such 
aspects of the system. 

In essence, Imsovision combines the advantages of 
using UML diagrams and software metrics in one.  As 
mentioned, its design allows for inclusion of additional, 
dynamic information about the system.  Once that is 
accomplished, Imsovision could successfully replace the 
UML diagrams, the debugger, and the system dependency 
graph.  All these tools and the user tasks associated with 
them will be integrated into the VE, were the developer 
has noted advantages over traditional media (i.e., paper, 
desktop). 

 
5. Related work 

 
Much of the work on software visualization is referred 

to in a recent collection of papers put together by Stasko 
[20].  This collection reflects the different categories of 
software visualization including visual programming, 
algorithm animation, program visualization, and 
information visualization.  Our work concentrates on 
visualizing an entire software system for the purposes of 
comprehending the systems design and architecture.   

Closely related research to what is presented here is by 
Knight [12-15] and Young [28].  This work involves 
using virtual reality and 3D graphics to visualize software 
systems.  Knight’s work, Software City, uses a city 
metaphor for visualization.  The world is the entire 
software system, a country is the directory structure, cities 
are files, and so on.  The Software World is a 
semantically rich environment designed to be familiar to 
humans.  However, this feature comes at the expense of 
underutilizing the 3D navigation features (e.g., it does not 
consider navigation “under ground” or “in the sky”) and 
at the expense of complexity (e.g., a building has too 
many elements that represent detailed information, which 
in fact decreases the level of abstraction and increases the 
complexity of the visualization).  In general, the 
resemblance between a VE and a real world environment 
makes the user feel more “at home”, but the complexity 
increases too much and, if the VE represents some 
abstract elements (e.g., source code), the mapping is 
usually unnatural. 

Other work that addresses the problems of visualizing 
entire software systems to support program 
comprehension and maintenance include SeeSoft [2, 3, 9], 
VOGUE [16], Rigi [21, 22]] and InfoBUG [5].  The 
SoftArch environment [10] has the power to represent 
static and dynamic aspects of the software system at 
various degrees of abstraction.  It is one of the few 
systems that allows for visualization at system 
architecture level.  As many other software visualization 

systems suffers from the limitation of 2D media.  The 
GraphVisualizer3D [26] uses Graph Definition Language 
to represent object-oriented software in 3D, using the 
same underlying methods: modules of source code are 
shown as atomic units, and relationships between modules 
are depicted by connecting lines [23].  These approaches 
do not make use of virtual reality environments and their 
representations are in 2D and 3D forms. 

 
6. Future work  

 
As mentioned earlier, we are currently working on a 

translator system that fully automates the conversion of 
source code into a visualization.  Our current prototype is 
only partially automated.  We are also working to fully 
support differing syntactic features of the source code.  
Integrating this with existing UML class diagrams is also 
a major goal. 

The long-term goals of this project are to build 
additional features to support the following: 

• Static visualization 
• Dynamic visualization 
• Collaborative problem solving (remote) 
• Visualization of system evolution 
• Support for representing reusable components 

and design patterns 
• Process and resource management 

 
A number of new features that support static view of 

the system are planned.  Filtering, labeling, and various 
additional drilldown features will be added.  A number of 
layout algorithms are being examined to best support the 
display of the classes. 

A number of features to support dynamic aspects of 
the source code are planned.  Data flow and control flow 
aspects will be integrated into the visualization.  
Highlighting parts of the system that are active over a 
slow motion run of this system is envisioned.  This will 
act much like a debugger trace, but at a much higher level 
of abstraction.   

Features to support collaborative problems solving 
within the VE will be of great benefit to large-scale 
software development.  Multiple developers can enter the 
VE from the same or remote sites to address problems of 
design, maintenance, or error correction.  This type of 
environment will also prove useful for explaining the 
complexities of a software system to new team members. 

The future version of Imsovision will be further 
integrated into the software development process.  The 
representation of the software system will be updated as 
each line of code is written or changed and saved.  
Imsovision will be used not only as an understanding tool, 
but also as a management tool.  In a collaborative 
environment (such as the CAVE), the project manager 



 

 

will be able to see each developer at work.  The manager 
will be able to monitor what component the developer 
working on, how much each component is complete, or 
how much it has changed from the last version. 
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