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Abstract 
 
The paper focuses on investigating the combined use 

of semantic and structural information of programs to 
support the comprehension tasks involved in the 
maintenance and reengineering of software systems.  
Here, semantic refers to the domain specific issues (both 
problem and development domains) of a software system.  
The other dimension, structural, refers to issues such as 
the actual syntactic structure of the program along with 
the control and data flow that it represents.  An advanced 
information retrieval method, latent semantic indexing, is 
used to define a semantic similarity measure between 
software components.  Components within a software 
system are then clustered together using this similarity 
measure.  Simple structural information (i.e., file 
organization) of the software system is then used to assess 
the semantic cohesion of the clusters and files, with 
respect to each other.  The measures are formally defined 
for general application.  A set of experiments is presented 
which demonstrates how these measures can assist in the 
understanding of a nontrivial software system, namely a 
version of NCSA Mosaic. 

 
 

1. Introduction 
 
Program comprehension is a complex task.  The 

software engineer must examine both the structural aspect 
of the source code (e.g., programming language syntax) 
and the nature of the problem domain (e.g., comments, 
documentation, and variable names) to extract the 
information needed to fully understand any part of a 
software system [7, 13, 31, 42, 45].  A number of tools 
and methods [1, 7, 8, 20, 27, 30, 41] have been 
investigated to address both of these aspects.  In general, 

structural information is easy to extract, but the real 
problem is on how to utilize that information properly.  
Semantic information, on the other hand, is much more 
difficult to extract.  Knowledge-based systems, of one 
form or another have often been used to address this 
problem.  Typically, a knowledge base of programming 
plans or schemes is constructed and then used to 
automatically identify concepts in a program.  But, there 
is an inherent difficultly in the use of knowledge bases, 
namely someone must construct them.  Assembling such 
domain specific knowledge is very time consuming and 
expensive.  

In the research presented here, we take the approach of 
using cheaper but less accurate methods to extract 
semantic information.  Specifically, we are investigating 
how well information retrieval methods can be used to 
extract relevant semantic information from software.  The 
PROCSSI1 system uses an advanced information retrieval 
technique, Latent Semantic Indexing (LSI), to identify 
semantic similarities between pieces of source.  This 
semantic similarity measure is used to cluster software 
components.  The paper presents a model that also 
incorporates structural information to assist in the 
comprehension task.  A set of experiments is presented 
which demonstrates how these measures can be utilized in 
the understanding of a nontrivial software system, namely 
a version of Mosaic [36].  Finally, conclusions are drawn 
based on these experiments and future research directions 
are discussed. 

 
2. Information retrieval and software 

 
There are a variety of information retrieval methods 

including traditional [14, 43] approaches such as signature 
                                                           

1 PROCSSI is short for PROgram Comprehension Combining 
Semantic and Structural Information.  We pronounced it “proxy”. 
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files, inversion, and clustering.  Other methods that try to 
capture more information about documents to achieve 
better performance include those using parsing, syntactic 
information, natural language processing techniques, 
methods using neural networks, and advanced statistical 
methods.  Much of this work deals with natural language 
text and a large number of techniques exist for indexing, 
classifying, and retrieving text documents.  These 
methods produce for each document a profile.  A profile 
is an abbreviated description of the original document that 
is easier to manipulate.  

The research that has been conducted on the specific 
use of applying information retrieval methods to source 
code and associated documentation typically relates to 
indexing reusable components [15, 16, 18, 28, 29, 32, 35].  
Notable is the work of Maarek [28, 29] on the use of an 
IR approach for automatically constructing software 
libraries.  The success of this work along with the 
inefficiencies and high costs of constructing the 
knowledge base associated with natural language parsing 
approaches to this problem [12, 13] are main motivations 
behind our research.  In short, it is very expensive (and 
often impractical) to construct the knowledge base(s) 
necessary for parsing approaches to extract even 
reasonable semantic information from source code and 
associated documentation.  Using IR methods (based on 
statistical and heuristic methods) may not produce as 
good of results, but they are inexpensive to apply and 
coupled with the structural information of the program, 
should produce good quality and low cost results.  

 
2.1. Latent semantic indexing 

 
Latent Semantic Indexing (LSI) [5, 25] is a corpus-

based statistical method for inducing and representing 
aspects of the meanings of words and passages (of natural 
language) reflective in their usage.  The method generates 
a real valued vector description for documents of text.  
This representation can be used to compare and index 
documents using a variety of similarity measures.  By 
applying LSI to source code and its associated internal 
documentation (i.e., comments), candidate components 
can be compared with respect to these similarity 
measures.  Results have shown [5, 25] that LSI captures 
significant portions of the meaning not only of individual 
words but also of whole passages such as sentences, 
paragraphs, and short essays.  The central concept of LSI 
is that the information about word contexts in which a 
particular word appears or does not appear provides a set 
of mutual constraints that determines the similarity of 
meaning of sets of words to each other. 

LSI relies on a Single Value Decomposition (SVD) 
[40, 46] of a matrix (word × context) derived from a 
corpus of natural text that pertains to knowledge in the 
particular domain of interest.  SVD is a form of factor 

analysis and acts as a method for reducing the 
dimensionality of a feature space without serious loss of 
specificity.  Typically, the word by context matrix is very 
large and (quite often) sparse.  SVD reduces the number 
of dimensions without great loss of descriptiveness.  
Single value decomposition is the underlying operation in 
a number of applications including statistical principal 
component analysis [22], text retrieval [6, 11], pattern 
recognition and dimensionality reduction [10], and natural 
language understanding [25].  For complete details of 
Latent Semantic Indexing see [9]. 

The resulting profile is that each word is represented as 
a vector in a d-dimensional space.  Performance depends 
strongly on the choice of the number of dimensions.  The 
optimal number is typically around between 250 and 350 
and may vary from corpus to corpus, domain to domain.  
The similarity of any two words, any two text passages, or 
any word and any text passage, are computed by measures 
on their vectors.  Often the cosine of the contained angle 
between the vectors in d-space is used as the degree of 
qualitative similarity of meaning.  The length of vectors is 
also useful as a measure. 

One of the criticisms of this method, when applied to 
natural language texts is that it does not make use of word 
order, syntactic relations, or morphology.  But very good 
representations and results are derived without this 
information [6].  This characteristic is very well suited to 
the domain of source code and internal documentation.  
Because much of the informal abstraction of the problem 
concept may be embodied in names of key operators and 
operands of the implementation, word ordering has little 
meaning.  Source code is hardly English prose, but 
through the use of selective naming, much of the high 
level meaning of the problem at hand is conveyed to the 
reader (programmer/developer).  Internal source code 
documentation is also commonly written in a subset of 
English [13] that may also lend itself to the IR methods 
utilized. 

A fundamental deficiency of a number of IR methods 
is that they fail to deal properly with two major issues: 
synonymy and polysemy.  Synonymy is used in a very 
general sense to describe the fact that there are many 
ways to refer to the same object.  People in different 
contexts, with different knowledge, or linguistic habits 
will describe the same information using different terms.  
Polysemy refers to the general fact that most words have 
more than one distinct meaning.  In different contexts or 
when used by different people the same term takes on 
varying referential significance [9].  Although software 
developers may tend to use standard terms for the 
concepts they are working on, a flexible technique 
capable to deal with variability is needed.  It has been 
shown that LSI tends to address these issues [25].  Also, 
like some other IR methods LSI does not utilize a 
grammar or a predefined vocabulary.  Though, many IR 



 

methods do use a list of non-essential words with low 
discriminatory power.  This makes automation much 
simpler and supports programmer defined variable names 
that have implied meanings (e.g., avg) yet are not in the 
English language vocabulary.  The meanings are derived 
from usage rather than a predefined dictionary.  This is a 
stated advantage over using a traditional natural language 
approach, such as in [12, 13], where a (subset) grammar 
for the English language must be developed. 

 
3. Clustering source code components 

 
Clustering of source code based on semantic and 

structural information is very useful in the maintenance 
and evolution of legacy software systems.  For instance, 
the clustering can be used to assist in the re-
modularization [37, 38, 49] of systems and the 
identification of abstract data types [8, 17].  If the system 
were to be reengineered into an object-oriented language 
from a structured one, this type of clustering would prove 
to be very useful.  The objective is to reduce the amount 
of source code an engineer needs to view at one time and 
give them clues about possible relationships with the 
system not apparent from the current organization of the 
files or documentation. 

The work presented here focuses on using the profile 
generated by IR methods, in this case a vector 
representation from LSI, to compare components and 
classify them into clusters of semantically similar 
concepts.  Given a software system, it can be broken 
down in to a set of individual source code documents.  
Profiles for each document are then generated by the IR 
method.  To cluster the source code documents they are 
partitioned based on similarity value λ with respect to the 
other documents, in the semantic space.  There is a variety 
of clustering algorithms and they can be divided broadly 
into four categories: graph theoretical algorithms, 
construction algorithms, optimization algorithms, and 
hierarchical algorithms.  There are also several hybrid 
methods that use ideas from different categories for 
specific problems.  Here, a simple graph theoretic 
approach is used, but a number of other types of 
clustering algorithms have been used to cluster software 
[3, 4, 21, 28]. 

A minimal spanning tree (MST) algorithm [23] is used 
to cluster the documents based on a given threshold for 
the similarity measure.  A document is added to a cluster 
if it is at least λ similar to any one of the other documents 
in the cluster.  This strategy attempts to group as many 
documents together within the given similarity range.  
The similarity measures are computed by the cosine of the 
two vector representations of the source code documents.  
The similarity value therefore has a domain of [-1, 1], 
with the value 1 being "exactly" similar. 

A simple parsing of the source code is done to break 

the source into the proper granularity and remove any 
non-essential symbols.  Comment delimiters and many 
syntactical tokens are removed as they add little or no 
semantic knowledge of the problem domain.  Also, the 
LSI method inherently will see such ubiquitous tokens 
such as a semi-colon as a totally non-discriminating 
feature between to source code components.  That is, 
every meaningful C++ component contains a semi-colon.  
Therefore, the variance of this feature is very low (most 
likely zero) thus; if two components have a semi-colon 
then nothing can be said about their similarity. 

The granularity of the source code input to LSI is of 
interest at this point.  In the applications of LSI on natural 
language corpuses, typically a paragraph or section is 
used as the granularity of a document.  Sentences tend to 
be to small and chapters too large.  In source code, the 
analogous concepts are function, structure, module, file, 
class, etc.  Obviously, statement granularity is too small 
and a file containing multiple functions may be too large. 

 
3.1. Previous Experiments using LSI 

 
In previous experiments done by the authors, the 

function and class declaration levels have been used [32].  
Two readily available software systems were used as data 
for the experiments: LEDA [26] (Library for Efficient 
Data structures and Algorithms) and MINIX [47] 
(Operating System).  LEDA is a library of the data types 
and algorithms for combinatorial computing and provides 
a sizable collection of data types and algorithms in a form 
that allows them to be used by non-experts.  LEDA is 
composed of over 140 C++ classes.  MINIX is a simple 
version of the UNIX operating system and widely used in 
university level computer science OS courses.  It is 
written in C and consists of approximately 28,000 lines of 
code.  Given that LEDA is written in C++ using an 
object-oriented methodology the granularity chosen is that 
of the class LEDA has 144 source code documents.  For 
MINIX the function level is used along with some whole 
files that are made up of data structure definitions.  This 
resulted in 498 source code documents for MINIX. 

The previous work supported the concept of using LSI 
as a similarity measure for clustering software at a given 
level of granularity, namely a class or function level [32].  
The clusters automatically produced by this method 
tended to reflect the reality of the source code [32].  
Pieces of source code that had large amounts of semantic 
similarity were in general grouped together and modules 
with no relation to others remained apart.  The clusters in 
the LEDA library seem to reflect class categories, that is, 
groups of related classes that function on similar concepts 
or solve common types of problems.  In the MINIX 
system, the clusters are quite different due to the different 
methodology and programming language utilized.  In this 
case, the clusters represented sets of documents that 



 

represent a class or abstract data type.  The larger clusters 
are typically composed of one or two data structure 
definitions and a number of functions that utilize these 
data structures. 

While these experiments support the use of LSI to 
source code, the fact is that both of these software 
systems are very well written, documented, and 
organized.  Also, neither of these systems is very large.  
In general, one does not need complex tools to help in 
understanding these types of software systems.  We will 
demonstrate the use of these methods on a more real 
world type problem in a following section. 

We are developing the PROCSSI system as an 
experimental platform in order to test these methods 
usefulness to the general problem of program 
comprehension.  This system utilizes a number of metrics 
and measures derived from the semantic information 
produced from LSI.  These metrics are now described. 

 
Figure 1:  A part of the relationship graph 

representing Mosaic.  The files DrawingArea.c, 
DrawingArea.h and Drawing AreaP.h are shown 

entirely.  Not all edges shown. 
 

4. Metrics for comprehension 
 
The PROCSSI system uses a graph theoretic approach 

to define metrics that will be used in the comprehension 
task.  Our choice of representation is a multi-graph, 
similar to how a data flow or control flow graph is 
represented (see figure 1).  Each node represents a source 
code document.  The document relates to the level of 
granularity used for clustering.  We automatically label 
the nodes with a unique document number generated 
during parsing.  But in the best case, the nodes could be 

labeled with the name of the document (e.g., function 
name, class name, etc.), which can be derived from the 
associated source .  Below are some basic definitions of 
the model. 

Definition.  A source code document (or simply 
document) d is any contiguous set of lines of source code 
and/or text.  Typically, a document is a function, block of 
declarations, definitions, or a class declaration including 
its associated internal documentation (comments). 

Definition.  A software system is a set of documents S 
= {d1, d2, …, dn}.  The Total number of documents in the 
system is n = |S|. 

Definition.  A cluster, ck, is a set of documents from S 
such that ck ⊆ S.  Size of a cluster, ck, is the number of 
documents in a cluster, noted |ck|. 

Definition.  A file fi, is then composed of a number of 
documents and the union of all files is S.  Size of a file, fi, 
is the number of documents in the file, noted |fi|.  A file is 
a cluster defined by the developers. 

Definition.  A relationship graph is represented as a 
multi-graph G = (S, E), where the nodes S are the 
documents, E is a set of weighted edges, and a function e: 
E → {(di, dj) | di, dj ∈ S; di ≠ dj}.  The function e defines 
which nodes are connected by which edge.  The edges u 
and v are called parallel or multiple edges if e(u) = e(v).   

Each parallel edge represents a relationship between 
the nodes (i.e., documents) it connects.  There are several 
types of edges; each represents different relationships 
between the two source code documents.  Here we 
consider two types of relationships, namely semantic 
similarity and structural relationships.  They are defined 
as follows. 

Definition.  The function sem : S×S → E defines edges 
that represents a semantic similarity between source code 
documents.  The edges defined using the sem function are 
called semantic edges. 

Definition.  The function struct : S×S → E defines 
edges that represent a structural relationship (e.g., data 
flow, control flow, coupling, etc.).  The edges defined 
using the struct function are called structural edges. 

A cluster ck is then represented as a connected (by 
edges of one type) sub-graph of G (figure 1).  Each node 
with zero degree represents a singleton cluster.  There will 
be as many types of clusters as there are edge types.  In 
particular, we define semantic clusters, having edges 
defined by the semantic similarity function and structural 
clusters, having edges defined with the structural 
connectivity function.  Multiple semantic similarity and 
structural connectivity functions can be incorporated into 
this model.  Currently, we are only using one type of each 
for the work presented here. 

The weighted semantic edges λ(di, dj) ∈ E represent 
the similarity measure between to adjacent nodes and in 
this case λ = lsi(di, dj), where the function lsi : S×S → R[-
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1,1] is a real value between –1 and 1 that represents the 
similarity measure between its document arguments.   
This represents the cosine between the vector descriptions 
of the two documents.  Of particular interest here are the 
edges that represent a similarity between two documents 
with a value λ > 0.7 (i.e., this corresponds to an angle of 
45° or less between the vectors).  Edges that do not fit this 
constraint can be disregarded or removed from the graph.  
The semantic similarity function to be used is lsisem: S×S 
→ E, where lsisem(di, dj) ∈ E if lsi(di, dj) > 0.7. 

The structural information currently being used is 
derived from the file structure of the software system.  
While this is a very simple form of structural information, 
it has been shown to convey a good deal of information 
[3].  In addition, most existing software clustering 
methods that use a graph representation model the files as 
simple nodes [2-4, 33, 34].  It is often considered that files 
are implicitly cohesive units of a software system.  
Unfortunately, that is not the case in many legacy 
systems.   

The un-weighted structural edges (di, dj) ∈ E 
represents the appurtenance to the same file.  The function 
file: S×S → {1, 0} is 1 if the argument documents are 
from the same source code file and 0 otherwise.  The 
structural connectivity function to be used is filestruct: 
S×S → E, where filestruct(di, dj) ∈ E if filestruct(di, dj) = 
1.  Thus, in this case, a structural cluster will represent a 
file. 

Given these definitions, we build a set of metrics for 
use in the comprehension task.  For simplicity, we will 
refer to semantic clusters as simply clusters and to the 
structural clusters as files.  The following is a set of 
measures and metrics that pertain to (semantic) clusters of 
source code documents: 

Definition.  The number of files that contain a 
document from a given cluster is | FDCk | where 

FDCk = {f ⊆ S | ck ∩ f ≠ ∅} 
Definition.  The semantic cohesion of a cluster with 

respect to files is  

SCCFk = 
|c|

1|FDC|1
k

k −− . 

Definition.  The number of documents in a cluster 
from a given file is |DCFi,k| (number of common nodes 
between the two clusters) where  

DCFi,k = {d | d ∈ ck ∩ fi, ck ⊆ S, fi ⊆ S}. 
Definition.  The degree of relationship of a given file 

with a given cluster Ri,k is |DCFi,k| / |fi|. 
Below is a set of measures and metrics that deal 

directly with files (structural clusters) of the software 
system: 

Definition.  The number of clusters that contain a 
document from a given file is |CDFi| where  

CDFi = {ck ⊆ S | ck ∩ fi ≠ ∅} 
Definition.  The semantic cohesion of a file with 

respect to clusters is  

SCFCi = 
|f|

1|CDF|1
i

i −− . 

Definition.  Number of files related by a cluster to a 
given file, fi, is | RFi | where  

RFi = {f ⊆ S | ck ∩ f ∩ fi ≠ ∅, f ≠ fi, ck ⊆ S}. 
Definition.  Number of files strongly related by a 

cluster to a given file, fi, is SRFi:  SRFi = | RFi | - max | ck 
| - 1 and ck ∈ LCk where LCk is the set of clusters that 
contain documents from fi and have a low semantic 
cohesion with respect to files.  

LCk = FDC ∩ {cj⊆ S|
|c|

1|FDC|
1

j

j −
− <ε} 

where ε is an empirically established threshold. 
All these definitions can be generalized to relate to 

semantic clusters and structural clusters of any kind. 
 

5. Experiments with Mosaic 
 
To determine 

how well the 
selected IR method 
supports the 
program 
understanding 
process, the source 
code for version 2.7 
of Mosaic [36] was 
used as input into LSI 
described method.  The
to help support unders
code.  This experiment 
only the IR method 
information.  It was fe
produced with the IR m
with more structural inf
tool. 

Mosaic is written 
developed by multiple
standard is observed o
times different standar
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kinds of realities often 
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development project. 
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Table 1.  Vitals for Mosaic. 
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Vocabulary 5,114 
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parsed documents 2,347 
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ethod alone, then combining that 
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 of 350 for the 2,347 documents 
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viously, based on 
 angle of 45 
rees or less (i.e., 
ween 1.0 and 0.7) 
ween any two 
tors, which 
ulted in 655 
upings. 
A distribution of 
 clusters based on 
 number of 
uments they 
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whole.  The following guidelines are utilized in 
assessment of clusters and files: 
� Semantic cohesion of a file with respect to clusters 

(SCFCi) should be high. 
� Number of files strongly related by a cluster to a 

given file (SRFi) should be low. 
� Semantic cohesion of a cluster with respect to files 

(SCCFk) should be high. 
� Degree of relationship of a given file with a given 

cluster (Ri,k) should be high. 
Each of the following examples presents a group of 

files and clusters that are related.  They were selected 
either solely based on the values of their associated 
metrics, or in conjunction with some additional domain 
knowledge (e.g., file names, existence of some variables 
in the files, etc.).  Files that satisfy the above-mentioned 
Table 2.  A distribution of 
the size of clusters.  The 
number of clusters that 
contain a given number 

of documents. 
Number of 
Documents 

Number of 
Clusters 

1 481 
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table 2.  There are a large number of singleton clusters 
(481) and few really large clusters.  These numbers reflect 
the same type of trends that were found in the earlier 
experiments.  The large number of clusters of size one 
reflects the fact that many functions often stand by 
themselves semantically.  The largest cluster is for the 
most part composed of a common header comment that is 
found in almost every file.  It also includes a large number 
of very small documents that were parsed out to be only 
one or two lines of code. 

A number of scenarios were envisioned that require 
such understanding of a large software system with little 
existing external documentation.  The system may be 
under maintenance by a person with little knowledge of 
the system or a reengineering of the system may be 
planned.  In such a case, the software is written in C, a 
reengineering of the system in another language, say C++, 
may be planned.  In fact, such a reengineering of Mosaic 
actually took place and current versions are written in 
C++. 

The clustering of the source code gives another 
dimension to view relationships among pieces of source 
code.  Grouping functions and structures together within a 
file often represents some semantic relationship within the 
grouping.  For instance, an abstract data type (ADT) is 
often encapsulated in the C language within an 
implementation file (.c) and an associated specification 
file (.h).  Unfortunately, not all software systems are 
written with good habits of coupling and cohesion in 
mind.  In legacy systems, it is quite common that little (or 
no) semantic encapsulation is used, concepts are spread 
over multiple files, and files contain multiple concepts. 

 
5.2. Understanding Mosaic 

 
The metrics described in section 4 were computed for 

the clustering of Mosaic that was generated.  The 
resulting values are used to identify groups of documents 
in the software system that should be investigated as a 

conditions were considered for further manual inspection.  
This step, selecting the files that are candidates for 
manual inspection, can be automated and would reduce 
the amount of manual work needed to understand the 
software system.  For the files and clusters the 
measurements and metrics are computed and presented in 
groups of three tables: one for the metrics and 
measurements dealing with files (tables 3, 6 and 9), 
another for the metrics dealing with clusters (tables 4, 7, 
and 10), and the third for the degree of relationship 
between the files and clusters (tables 5 and 8). 

 
5.2.1. 
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Table 3.  Metrics on the important 
files related to DrawingArea.c 

File (fi) | fi | SCFCi SRFi

DrawingArea.c 11 0.73 3 
DrawingArea.h 1 1.00 2 

DrawingAreaP.h 1 1.00 2 
HTML.c 91 0.69 14 
Example: DrawingArea 

first example shows a group of related files (table 
were selected based on the file names, a natural 
that an analyst would do when starting to 

and a software system.  The goal of the experiment 
see if using the measurements and values of the 
, one could identify related files.  DrawingArea.c 
 first selected file, and the existing measurements 
d that it is strongly related with three other files 
Fi in table 3).  The degree of relationship with 
c1 is very low (see table 5), so the related files 
 that cluster were not considered for further 
.  The measurements and the metrics (table 3, 4 
indicated DrawingArea.h and DrawingAreaP.h as 
candidates for analysis.  Given the names of the 
is is not a surprising finding.  The values also 
d HTML.c as the best candidate among the rest of 
ted files.  HTML.c does not satisfy entirely the 
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ngly related files implement a minimalist drawing 
a widget.  Additionally, the files implement a well-
ined abstract data type – drawing area.  A form of 
rmation hiding was even used by using a separate file 
ely, DrawingAreaP.h, to implement some “private” 

ctions.  Two of the functions in DrawingArea.c 
nect the files with over 200 other files, through cluster 
 Closer inspection revealed that the two functions are 
act constructors and have only two lines of code.  This 
kes them similar with many other constructor-type 
ctions, so the induced relationships were ignored.  The 
ues of the metrics in table 1 and table 3 signify this fact 
some degree.  The analysis confirmed that this was a 
ncidental relationship. 
Although the metrics indicated a weak relationship 
h the HTML.c file, the relating functions were 
lyzed.  The two functions (from DrawingArea.c and 
ML.c) in cluster c331 are related because they are 
initions to similar structures: one defines 
lClassRec, while the other defines 
wingAreaClassRec.  Both definitions use the same 
stant names and similar identifiers (e.g., TRUE, 
LSE, NULL, Initialize, Inherit, Resize, etc.). 

considering HTML.c as the starting file, it is found that 
the HTMLWidget.c file is also related to the concepts 
derived previously.  Finally, it was concluded that these 
five files contain definitions for a general (abstract) 
widget structure (ADT or class) and implementation of at 
least two specializations of it: drawingAreaClassRec and 
htmlClassRec. 

This example proved that 
by analyzing the metrics, 
groups of files that contain 
cohesive implementation of 
ADTs or classes representing 
some concepts (drawing area) 
could be identified.  The 
metrics helped identify files 
that contain implementation 
of similar structures (html 
record) and implementation of a general (abstract) 
concept (e.g., widget) that is a generalization of the 
previous ones. 

 
5.2.2. Example: chunk handling and flexible arrays 

 
In this experiment, a file was selected at random from 

among those with very high semantic cohesion with 
respect to clusters and containing between 5 and 20 
documents.  The selected file was HTChunk.c, with 8 
documents and a cohesion value of 0.88 in table 6.  From 
this point on, a similar procedure with the one described 
in the first example is followed.  The metrics indicated a 
highly cohesive set of files: HTChunk.h, HTChunk.c, and 
HTAAFile.c.  Upon further analysis, it was determined 
that the two functions from HTAAFile.c that are related 
perform similar functions on different data structures 
(e.g., adding a character to a list of characters) and share 
variables and constants with the same name (e.g., ch, 
Table 5.  Degree of relationship of a given file
with a given cluster 
File(fi) Cluster Ri,k 

DrawingArea.c c1 0.18 
DrawingArea.c c327 0.73 
DrawingArea.c c331 0.09 
DrawingArea.h c327 1.00 

DrawingAreaP.h c327 1.00 
HTML.c c1 0.01 
HTML.c c327 0.01 
HTML.c c331 0.01 
 

These semantic similarities indicated that both 
ctions use the same global constructs (i.e., user defined 
es and identifiers) and the ADTs that they relate to 
ld be in fact specializations of the same parent (or 
tract) class.  The other related function from the 
ML.c file, is a geometry manager for a widget that is 
 used by the drawing area ADT. 

These findings indicated that HTML.c should be also 
lyzed in conjunction with DrawingArea.c and its 
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Table 6.  Metrics on the important files 
related to HTChunk.c 

File(fi) |fi| SCFCi SRFi 

HTChunk.c 8 0.88 3 
HTChunk.h 1 1.00 3 
HTAAFile.c 5 0.60 16 
HTNews.c 55 0.49 17 
E, NULL).  In addition, the size 
tively small (5-10 lines of code). 
 not considered further in the ana
ilarity shows that HTAAFile.c co
lement some sort of list, even if n
chunks concept.  Thus, a separat
mmended.  Similar facts we
ews.c file, although its metrics w

t was also found that the re
Table 7.  
Semantic 

cohesion of 
clusters with 
spect to files 

luster SCCFk
c472 0.67 
c466 0.63 
of these functions is 
 Therefore, this file 
lysis.  However, the 
ntains functions that 
ot directly related to 
e analysis of this is 
re found for the 
ere even lower. 
maining two files 
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structures to handle passwords and access control.  The 
other files were using these functions and structures.  This 
time, the names of the files would not have indicated the 
relationships.  Due to limited space, the actual metrics are 
not shown here. 

 
5.2.4. Example: top clusters and newsgroup 

 
This example deals 

with the analysis of a 
Table 8.  Degree of relationship of a given file 
with a given cluster 
File(fi) Cluster Ri,k 

HTChunk.c c472 1.00 
HTChunk.h c472 1.00 
HTAAFile.c c472 0.40 
HTAAFile.c c466 0.60 
HTNews.c c472 0.02 
 

TChunk.c and HTChunk.h) implement an ADT that 
eals with flexible arrays or chunks.  A chunk, in this 
stem, is a structure that may be extended.  These 
utines create and append data to chunks and 
tomatically reallocate them as necessary.  The 

enerality of the structure determined the other (weaker) 
lationships with the other files.  This suggested that 
ose files implement similar structures (lists) but using 

ther concepts (e.g. files and news articles rather than 
unks). 
The study of the related files and clusters indicated that 

uster c466 (see tables 8 and 9) should be analyzed 
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number of clusters with 
very high cohesion with 
respect to files.  The 
second example (chunk 
handling) showed that the 
HTNews.c file should be a 
candidate for manual 
inspection, but the 
observed relationships 
were not relevant to that 
group of files.  As mentioned, the relationships only 
indicated that there is a type of list structure implemented 
in this file.  HTNews.c is related to the newsrc.c file that 
has high cohesion (table 9).  More than that, newsrc.c is 
related to three of the top ten (table 10) most cohesive 
clusters (c200, c205, and c206).  Therefore, these were the 
exact type of clusters to be considered as starting 
elements in this experiment. 

The analysis showed that newsrc.c implements a 
Table 9.  Metrics on the important files
related to newsrc.c 

File (fi) |fi| SCFCi SRFi

newsrc.c 55 0.74 1 
HTNews.c 31 0.49 17 
 

arately.  This supports the values in table 7 that also 
icated the “interestingness” of the HTAAFile.c that 
ngly relates to the cluster c466 (table 8).  This example 
wed that, solely using the metrics, groups of strongly 
ted and cohesive files could be identified and that they 
lemented a general structure (chunks or flexible 
ys).  The metrics helped to identify files that contain 
ilar structures (lists).  The fact that Mosaic was written 
several authors led to interesting facts such as the fact 
t often, different authors implemented their own list-
cessing module, instead of using a general one, across 
 system.  Again, in this case the identified similarities 
p in finding these structures (e.g., lists).  After that, it is 
y to manually identify the concepts (objects) that are 
dled by the structures (e.g., stored in lists).  
 
.3. Example: cluster c466, the password and access 
trol 

 
In this example, a cluster was chosen as a starting 
ment in the analysis.  The starting cluster is c466 and 
 indicated in the previous example as a candidate for 
arate analysis.  The cluster spans over 14 highly 
ted and cohesive files.  The manual analysis revealed 

t 10 of these files implemented the basic functions and 

number of structures that deal 
group” and “news article”.  
HTNews.c file, although not 
because HTNews.c implemen
“Network News Transfer prot
library”.  In order to do t
implemented in the newsrc.c f
structure, indicated by the r
example, is in fact a list of new

 
6. Related work 

 
Related research on simila

work of Girard and Koschke [
based on similarity metrics be
and defines similarity metrics 
semantic information.  The
defined using a resource flow 
source code and semantic inf
Schwanke [44].  Schwanke’s 
[39] information hiding princ
research.  The work propose
clusters are used as a param
research that clusters software
by Anquetil [3, 4], Wigger
Lakhotia [24].  Lakhotia lis
Table 10.  Semantic 
cohesion of 
clusters with 

respect to files 
Cluster SCCFk

c1 0.81 
c200 0.93 
c205 0.88 
c206 0.89 
c201 0.50 
with the concepts of “news 
The relationship with the 
very strong, is significant 
ts, among other things, a 

ocol module for the WWW 
hat it uses the structures 
ile.  More than that, the list 
elationships in the second 
s articles. 

rity measures includes the 
17, 19].  This work is also 
tween software components 
that combine structural and 
 structural information is 
graph representation of the 
ormation uses the work of 
work is based on Parnas’s 
iple and on Tversky’s [48] 
d here differs in that the 

eter to the metrics.  Other 
 components includes work 
ts [49], Merlo [34], and 
ts a number of works on 



 

software clustering.  Most of them use formal features 
(i.e., structural information) and two of them ([28] and 
[37]) use semantic information (referred to as non-formal 
descriptive features).  The research that has been 
conducted on the specific use of applying information 
retrieval methods to source code includes [15, 16, 18, 28-
30, 32, 35]. 

 
7. Conclusions 

 
The experiments with the PROCSSI system show that 

the semantic similarity of source code documents 
provides valuable information that can be used in the 
tasks of software maintenance and evolution.  It also 
shows that concepts from the problem domain are often 
spread over multiple files, and files contain multiple 
concepts.  The next steps in the development of the 
PROCSSI system will be to incorporate additional 
structural information into the model.  The low cost of the 
methods used in this system and their flexibility allows 
experiments on software written in other languages.  The 
only necessary change is in the initial parsing of the 
software system.  All the tasks performed by PROCSSI 
can be fully automated and performed in relatively short 
time repeatedly, using different kinds of information.   

The examples describe how the methods can be used 
to assist in the program comprehension process.  The 
methods appear to be reasonable for automatically 
grouping semantically similar software components based 
on variable and type names along with comment text.  
The clusters produced by these methods represent an 
abstraction of the source code based on a semantic 
similarity, which should relate to higher-level concepts.  
The clusters produced are often similar to those that 
would be produced by a programmer with good 
knowledge of the particular software.  Adding more 
structural information should allow the development of 
tools to assist the understanding of large-scale software 
systems.  Development of cost effective methods that do 
not rely on the acquisition and representation of large 
amounts of knowledge is necessary to support program 
comprehension tools that are widely usable. 
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