Towar ds Portable Source Code RepresentationsUsing XML

E. Mamas
{evan@swen.uwaterloo.ka
Dept. of Electrical &
Computer Engineering
University of Waterloo
Waterloo ON. N2L 3G1
Canada

Abstract

One of the most important issue is source code anal-
ysis and software re-engineering is the representation of
source code text at an abstraction level and form suitable
for algorithmic processing. Moreover, source code repre-
sentation schemes must be compact, accessible by well de-
fined application programming interfaces (APIs) and above
all portable to different operating platforms and various
CASE tools. This paper proposes a program representa-
tiontechnique that is based on language domain modes and
the XML markup language. In this context, source code is
represented as XML DOM trees that offer a higher level
of openess and portability than custom-made tool specific
Abstract Syntax Trees. The DOM trees can be exchanged
between toolsin textual or binary form. Smilarly, the do-
main model allows for language entities to be associated
with analysis services offered by various CASE tools, lead-
ing to an Integrated Software Maintenance Environment.

1 Introduction

K. Kontogiannis
{kostas@swen.uwaterloojca
Dept. of Electrical &
Computer Engineering
University of Waterloo
Waterloo ON. N2L 3G1
Canada

or more of a software engineer’s time is spent on such in-
formation searching for related program understanding and
maintenance tasks [Pressman97].

The project’s objective is to investigate the requirements,
design issues and implementation issues for systems which
store, organize, and manage information related to large
amounts of legacy code for the purpose of system main-
tenance and reengineering. The project is founded on the
premise that software artifacts, such as source code, Ab-
stract Syntax Trees (ASTS), call graphs, documentation, in-
formal notes and memos from developers, can all be stored,
organized, and managed by a generic system, which we
shall call a Integrated Software Maintenance Environment
(ISME). The ISME aims on providing support for software
reengineering tasks. One can think of a ISME as a spe-
cialized DBMS, tailored to the representation of software-
related information, also offering specialized interfaces for
CASE plug-ins in support of software maintenance tasks.
ISME is intended to make it easier to load and integrate
all relevant information about a legacy system, as well as
search, access and correlate information during a migration
process by supporting the interface of the code base with

There is a pressing demand for legacy software system$Xisting CASE tools and transformation plug-ins.
to be at all times current and operational. In order to achieve
these objectives, software developers constantly maintair2 Related Work
their legacy systems so that, they can be ported to new en-
vironments, and eliminate dependencies on obsolete pro- |n this section we discuss related work performed by var-
gramming languages, operating systems, or software archiious research groups in the area of source code modeling
tectures. A great problem in such maintenance tasks is acand program representation. The area of program represen-
cessing, organizing, and managing information related totation deals with the techniques and methodologies to rep-
the software system. This includes the source code itselfresent information about a software system at various levels
call graphs, data dependencies, links to external documenof abstraction that are suitable for algorithmic processing.
tation, informal memos etc. Itis estimated that up to 50% In this respect, program representation aims on facilitat-
*This work was funded by the Natural Sciences and Engineering Re- ing source code analysis that can be applied at various levels

search Council of Canada, the Consortium for Software Engineering Re- Of abstraction and detail namely at:
search, and IBM Canada Ltd., Centre for Advanced Studies. Inquiries for
this paper can be sent to kostas@swen.uwaterloo.ca

¢ the physical level where code artifacts are represented

Proceedings of the Seventh Workin%Conference on Reverse Engineering (WCRE'00)
1095-1350/00 $10.00 © 2000 IEE

as tokens, syntax trees, and lexemes, <relation, entity, entity>.Sequences ofthese
triplets are stored in self-contained files. Currently RSF is
%he base format for the reverse engineering tool Rigi [Rigi].
The Tuple-Attribute Language, or TA in short, is a lan-
Suage designed to represent graph information [Holt98].
This information includes nodes, edges and any attributes
« the conceptual level where software is represented inthe edges may contain. TA is easy to read, convenient for
the form of abstract entities such as, components, ab-recording large amounts of data and easy to manipulate.
stract data types, and communicating processes. The main use for TA is to represent facts extracted from
)) : source code through parsers and fact extractors. In this way
These representations are achieved by parsing the SOUrGEA can be considered to be a "data interchange” format.
code of the system being analyzed at various levels of detail AsFix is a parse tree representation for terms and mod-

and granularity. ules. The AsFix formalism is an instantiation of a more

One such representation is the Abstract Syntax Tree. Ab'generic format called ATerms. ATerms are used to repre-

stract Syntax Trees or AST,S !n short,. are tree' strupturessent structured information that is to be exchanged between
that represent all the syntactic information contained in the a collection of tools.

source code [Aho86]. Every node of the tree is an element Graph Exchange Language, or GXL in short, is a pro-

of ?Ihe Lan?ua;ge. The non-leaf nodes represent operatorzosed format for exchanging information among tools that
while the leaf nodes represent operands. Abstract Synta nalyze computer programs [Holt00]. The GXL format is

Trees suppress unnecessary syntactic details (whitespacgii1pje for representing typed graph information. A graph

symbols, lexemes, punctuation tokens) and focus on theexchange format requires that both the schema and the data

structure of the code being represented. The AST nota-yt 1he graph are represented in the format and GXL accom-

tion is the most commonly psed strupture in compilers tq plishes this with the use of XML.
represent the source code internally in order to analyze it, Finally, in the area of CASE tool integration the Refine

optimize it and generate binary code for a specific platform. Code-base Management System, developed by Reasoning,

Abstract Semantic Graph, or ASG in short, provides a o product that provides support for software analysis and

rich abstract representation of source code text. ASGs aregansformation [Refine]. Refine uses ASTs for representing

¢ the logical level where the software is represented as
collection of modules and interfaces, in the form of a
program design language, annotated tuples, aggregat
data and control flow relations,

composed of nodes and edges. Nodes represent source co Surce code information and provides a proprietary Soft-

entities, while edges represent relations. Both the nodes an are Development Kit (SDK) for processing the informa-
the edges are typed and have their own annotations that deﬂon.

note semantic properties [Devanbu96].
The ASG as a program representation scheme has bee .
used by the Datrix?De?trix] andpit is currently used to model 3 Portable Source Code Representations
C++ and Java source code. In Datrix the ASG is annotated
with data and control flow information gathered from the In this section we provide a brief introduction to the
source code at parse time (i.e. scoping, call graph informa-XML language, the related Document Type Definition lan-
tion). guage and the existing interfaces for working with XML
Program Dependence Graph, or PDG in short, is a graphdocuments. Moreover, we explain how XML can be used
that combines control flow and data flow information into to represent source code at the AST level and we discuss
a single structure [Ferrante87]. In a PDG, nodes represenhiow programming language grammars can be mapped to
statements, expressions or regions of code and edges repXTDs.
resent data and control dependency information. The de-
pendencies expressed in a PDG, are a result of processing.1l eXtensible Markup L anguage
the source code information or the corresponding AST. The
PDG is useful for static and dynamic slicing techniques, XML is the acronym for Extensible Markup Language
program transformation and code optimizations. and has been developed by W3C (the World Wide Web
The Rigi Standard Format, or RSF in short, is a format Consortium). XML is an ideal format for storing structured
for representing source code information. It is a generic, data intended for publishing or exchange between different
intuitive format that is easy to read and parse. The infor- applications. XML derives from SGML (Standard Gener-
mation that RSF is currently used for can be classified asalized Markup Language) and in a way from HTML (Hy-
metadata. This allows RSF to be generic and to use theperText Markup Language). SGML was developed in 1986
same format to represent program information for a variety as an international standard for document markup. HTML
of programming languages without any changes. The syn-was developed in 1992 as a language specific to Web pages.
tax of RSF is based on entity-relation triplets of the form What makes XML flexible is that it allows the end user to

Proceedings of the Seventh Workin%Conference on Reverse Engineering (WCRE'00)
1095-1350/00 $10.00 © 2000 IEE

specify custom tags and to associate semantic informatiorELEMENT
to source code text. Elements are the basic contents of an XML file and
An XML document has a logical and a physical struc- correspond to user defined tags (ileook, aut hor) as
ture. The logical structure allows the document to be di- illustrated in the example above.. We can have empty
vided into units called elements. These elements can conelements, or elements that contain other elements or text.
tain other elements in turn thus allowing for a complex log- A model group (tag) is used to describe enclosed elements
ical structure to be defined. and text.
For example, to describe a book we need a book ele-
ment, a title element and an author element. Also, this bookATTLIST
will have a unique ISBN number that could be stored as anA list of attributes associated with a particular element can
attribute to the book element. Here is how this would be be declared using ATTLIST. Every attribute has a name,
expressed in XML: a type and a default value. The type determines the range
of values the attribute may hold. The allowed types are:
CDATA, NMTOKEN, NMTOKENS, ENTITY, ENTITIES,
ID, IDREF, NOTATION or name group. The default value
allows us to specify if the attribute is required, implied,
default or fixed.

<book | SBN="123456789" >

<title>The story of ny life</title>

<aut hor >Geor ge Thonas</ aut hor >

<aut hor >Tom Jhones</ aut hor >
</ book>

ENTITY
i) i i Entities are used to avoid repetition in XML documents.

~ The benefits of using a meta-language like XML in the They are declared once and can be referred to many times.
industry are many. First of all, the document publishing ggth internal and external entities are allowed in DTDs.

applications can exploit it to develop better searching and |hternal entities are defined within the current DTD, while
indexing techniques. The web applications would benefit oyiarnal entities reside in a separate DTD.

by having the power to dynamically customize the way the
same information is presented to the different users. The
most important benefit of all will be that of data exchange.
XML will allow the creation and use of common structures
that will be used between applications not only to exchange
data but also to communicate using messages. A detaile

description on the structure and uses of XML can be found o
in [Bradley98] and [W3CXML]. The following is a sample DTD that can be used to en-

force the logical structure of the example presented previ-
ously in the XML section. By examining the DTD we see

that a book must have one title and at least one author. Also
a book has a unique ISBN number as an attribute. Both the

Document Type Definition, or DTD in short, is a tech- tjtle and author elements contain character data that stores
nology directly related to XML documents. It provides a the information.

way of defining the logical structure of the XML document.

The logical structure contains all the elements that can be

used and describes how they can be used in relation to eack! ELEMENT book (title, author+)>

other. This results in a document hierarchy. Without a <! ATTLI ST book 1 SBN CDATA #REQUI RED>

DTD, an XML document can only be checked to determine <' ELEMENT title (#PCDATA)>

if it is well formed. This means that every start tag is <' ELEMENT author (#PCDATA) >

followed by a corresponding end tag. The use of a DTD

allows us to cheqk for validity of the XML document. 33 Working with XML documents

Everything that is in the XML document must conform to

the DTD specification. Therefore we are able to enforce

certain restrictions on how the XML document can be The World Wide Web Consortium has defined a standard
composed and this makes it easy to create applicationsnterface for accessing XML files called Document Object
that process these XML documents. The DTD contains aModel (DOM) [DOMspec]. Another interface called Sim-
number of declarations. Each declaration can be one of theple API for XML (SAX) [SAXspec] has been developed by
following declaration types: members of the XML-DEV mailing list.

NOTATION

Notations are used to refer to data that is not in XML
format. Notations can also be linked with entities by using
éhe NDATA keyword.

3.2 DocumentType Definition

Proceedings of the Seventh Workin%Conference on Reverse Engineering (WCRE'00)
1095-1350/00 $10.00 © 2000 IEE

Document Object Model (DOM) is provided by an AST generated by a language parser.
The proposed representation is simple but detailed enough

DOM is a language neutral interface for allowing pro- to represent the complete syntax of a specific program-
grams to access and update the structure and style of dooning language in the form of a DTD schema and anno-
uments. DOM is a tree-based API that generates a internatated source code in the form of a DOM tree. In addi-
tree structure of the document and allows an application totion, the DTD schema is extensible to allow for new en-
navigate and manipulate the tree. Every document is comdities and attributes to be added to model analysis results
posed of Nodes and a variety of node types are defined in theobtained by source code analysis tools. These analysis-
DOM Core specification. The DOM tree for the XML ex- specific schemata, can be defined separately and linked to
ample presented previously is shown in Figure 1. Methodsthe basic source code DTD schema. When working with
for manipulating the tree or its components are provided by multiple domain models, instead one can amalgamate and
the specific parser implementation. The advantage of thisaggregate these models into more general ones.
interface is that the complete document exists in memory For example, representations for programming lan-
and it can be easily processed and manipulated. The disguages that use XML as the modeling environment provide
advantage is that working with large documents imposes aseveral advantages. Namely, these are:

large memory requirement.
e Easy tounderstand and manipulate

By keeping the representation of the language as close
as possible to the grammar of the language no extra
learning burden should be added to the tool develop-
| ers. Since the grammar is something that developers
T whory. at ey | are already familiar with, our representations should
f-o anthor] approximate the grammar as much as possible.

book |

N LeedwEo Tlecim ma

; ¢ Extensible
= author The need to accommodate for the evolving program-
e T Shones | ming languages requires that the representation is
equally easy to change. The representation should also
Figure 1. Sample DOM tree. be flexible enough to allow for other representations to
be developed based on it as extensions.

o Widely supported
The success of a program representation is based on
how wellitis supported. The development of APIs that
enable developers to easily read, store and change the
information based on the suggested representations is
very important. These APIs should be readily available
for a variety of platforms.

Simple API for XML (SAX)

SAXisan event-based APl that reports event as itis pars-
ing the XML document. An application that handles the
events can be build to perform various tasks. The key dif-
ference when compared to DOM is that SAX does not built
a tree representation of the XML file in memory. Therefore,
SAX is more convenient for tasks that do not require the ¢ Human Readable

complete tree to be present in memory. A typical scenario Given the nature of the software maintenance tasks, it

in which SAX would be a better choice occurs when for ex- is necessary for the format to be eas”y readable. Even
ample, we need to search a 10MB file to count the number though most processing will be done automatically by

of "Author” elements. The system requirements by SAX the tools, enabling a developer to read the information
are minimal when compared to DOM. directly will make the development task easier.

4 XML based representations for program- 4.1 Annotating Source Code using XML
ming languages :
411 Mapping ASTstoDTDs

XML-based markup languages offer great flexibility as Given a specific programming language we need to define a
well as the ability to represent documents as DOM anno- representation in which every valid source code document
tated trees. Our objective is to develop XML-based programcan be mapped to. To accomplish this mapping from
representations in which the corresponding DOM trees rep-ASTs to XML trees we need to define a method to map
resent source code information at the same level as thighe grammar of the programming language to a Document

Proceedings of the Seventh Workin%Conference on Reverse Engineering (WCRE'00)
1095-1350/00 $10.00 © 2000 IEE

Type Definition (DTD). The mapping at this level will ¢ can occur many times. The element declaration captures
guarantee that all possible syntax trees defined by thethis concept by simply using the "+” symbol. The terminal
grammar (and therefore any source code program), cans mapped to an attribute declaration by storing the literal in
be mapped to XML trees defined by the correspondinga string calledral ue. In the table below the mappings for
DTD. One of the requirements when defining new XML both examples are shown.

representations is to make them as easy to use as possible.

In this context, we provide a set of general transformation | Sfammar | DTD

rules that assist in implementing a good mapping from a | &b Gn <!ELEMENT a (b,c?)>
grammar to a DTD. Below, a list of transformation rules a:bLiteral | <!ELEMENT a (c+)>

for defining such mappings is presented. b: ([; . <!ATTLIST a value CDATA>

» Non-terminal grammar symbols are mapped to ele-4.2 JavaMarkup Language (JavaML)
ments.
. The generation of a program representation for Java is
e Sequences of non-terminals are mapped to model se- .
based on a parser generator tool called Java Compiler Com-
piler or JavaCC in short [JavaCC]. This tool was initially
e Choices of non-terminals are mapped to model choice developed by Sun Microsystems and it is the most popular
groups (i.e. using the|™ symbol). parser generator for Java. A parser generator is a tool that
uses a BNF grammar as input and generates source code
e Non-Terminals that contain sequences of charactersthat can parse any instance of the BNF grammar. The popu-
are mapped to attributes. larity of JavaCC is most probably due to the grammar for
| Java that is shipped with the tool. The majority of Java
source code parsers are built using JavaCC and the Java 1.1
grammar. The Java 1.1 grammar was developed by Sriram
o Lists of non-terminals are mapped to model set groups Sankar at Sun Microsystems and a copy of this grammar

guence groups (i.e. using the ”,” symbol).

¢ Optional non-terminals are mapped to model optiona
choice groups (i.e. using the "?” symbol).

(i.e. using the "*" or "+” symbol). can be found in the distribution of JavaCC package.
) . The complete DTD that we generated based
¢ Terminals are mapped to attributes. on the Java 1.1 grammar can be found at

http://swen.uwaterloo.ca/ evan/javaml.html. Below

we present a small example of a Java source file and its

corresponding JavaML representation as it is automatically

e Sequences of terminals are mapped to distinct at-generated by adding semantic actions in the Java parser
tributes. generated by JavaCC.

¢ Choices of terminals are mapped to hamed group at-
tributes.

The use and combination of these transformation rulesJava source code
allow us to generate very elaborate mappings from gram-)
mars to DTDs. Once a grammar is mapped to a DTD, thePubl i ¢ class Car{
ASTs for a specific program can be mapped to XML files.
These XML files can then be used in place of the ASTs or
the original source files for maintenance tasks. public int getColor(){

int color;

return color;}
4.1.2 Example Mappings

In order to demonstrate how the previous rules are used We}

present the following two simple examples. In the first one, JavaML representation
we combine the rule for sequences of non-terminals and
the rule for optional non-terminals. The resulting element
deglargtion §tates that the elemantontains an elemeitt <Fi el dDecl ar at i on>

which is optionally followed by elemera. In.the .second <PrimnitiveType Type="int"></PrinitiveType>
example we demonstrate the rule for mapping lists of non- <\ari abl eDecl arat or 1 d 1 dentifier="col or"/>
terminals to model groups is used with in conjunction with </ Fj el dDecl ar at i on>

the rule for mapping terminals to attributes. We see fromthe

grammar rule that b is an artifact for expressing the fact that <Met hodDecl ar ati on Identifier="get Col or">

<O assDecl aration ldentifier="Car">

Proceedings of the Seventh Workin%Conference on Reverse Engineering (WCRE'00)
1095-1350/00 $10.00 © 2000 IEE

<Resul t Type> In order to generate OOML representations it is possible

<PrimtiveType Type="int"/> to define mappings from the JavaML and CppML represen-
</ Resul t Type> tations instead of using the source code directly. The imple-
<Bl ock> mentation of such mappings can be done in two ways: The

<Ret ur nSt at enent >
<Pri mar yExpr essi on>
<Nane |dentifier="col or"></Nane>
</ Pri mar yExpr essi on>
</ Ret ur nSt at emrent >

first involves the use of the XML APIs to construct a pro-
gram that maps one representations to the other. The second
approach involves the use of XSLT [XSLT] transformations
which are designed to map one XML document to another.

</ Bl ock> Both approaches will achieve the same goal and the devel-
</ Met hodDecl ar at i on> oper will have to select one. It needs to be clear though
that we are not interested in the implementation details of
</ d assDecl ar ati on> either approach. Our goal is to identify similar concepts in
JavaML and CppML and describe how they can be mapped
4.3 C++Markup Language (CppML) to OOML.

A small example of how common constructs in

The generation of a representation for the C++ program-JavaML and CppML can be identified and mapped
ming language is based on a different approach than thaf® the OOML representation below. The complete
for Java. Instead of using a parser generator we took adPTD for the OOML representation can be found at
vantage of a compiler product that maintains the interme- http://swen.uwaterloo.ca/ evan/ooml.html.
diate representation of the code and provides access to it Both Java and C++, represent objects by using the con-
through an API. This product is the IBM VisualAge C++ Cceptofclasses, class methods and class variables. An object
[VACpp] compiler which is developed at the IBM Toronto is an abstract entity that contains some data and that is able
lab. VisualAge features a customized source code reposit® Perform some kind of operations on its data. A class can
tory which is called Codestore in which all the information b€ thought of as a template for creating an object. Every
generated during the compilation process is stored. Parsclass has a name that uniquely identifies the class. The class
ing, processing and code generation information can all pevariables define what data the object can store and the class
accessed using the provided APIs. The goal behind the armethods define what kind of operations the object can per-
chitecture of VisualAge is to allow developers to maintain form. In OOML this information is expressed as follows:
and analyze C++ source code. Our goal in using VisualAge
is to demonstrate that a commercial product can be inte-< g ENENT d ass
grated and used as a tool in a more complex environment. (Vvari abl eDecl ar ati on*, Met hod*) >
Using a parser generator would have been another approach! ATTLI ST O ass ldentifier CDATA>
in generating a C++ representation. The complete repre-
sentation for C++ that was generated using VisualAge can
be found athttp://swen.uwaterloo.ca/ evan/cppml.html.
Sample source files and their representations are also avai
able. The grammar that CppML was based on, was im-
plicitly extracted from the Codestore APIs, which was ob- <' ELEMENT O assDecl aration
tained from the VisualAge development team and is expres-_, E(LLEMNEDNCT" {Lﬁgg’i ffzg)gc;:;gteéfgz ion
sive enough to represent ANSI C++ compliant source files. (nane, d assBody) >

<I ATTLI ST Unnodi fi edd assDecl arati on

4.4 Object Oriented Markup Language (OOML) ~ _ jdent!f ic]e;sggﬁx>

(Fi el dDecl ar ati on| Met hodDecl arati on) *>

The relevant parts of the JavaML representation are
Ighown below:

The object oriented programming paradigm has been im-
plemented ina variety qurogrammmg languages. Hovyever In order to map JavaML classes to OOML classes we
the key concepts remain the same no matter what the |mple-need the following mappings:
mentation is. Here, we demonstrate how the DTD schemata '
for the Java and C++ programming languages, which are
both object oriented, are aggregated to a more generic rep€lassDeclaratior> Class
resentation called OOML. It is noted that OOML does not UnmodifiedClassDeclaration.Name Class.ldentifier
have all the information that exist in a source file, because FeildDeclaration— VariableDeclaration
not all Object Oriented languages contain entities that canMethodDeclaration» Method
be aggregated.

Proceedings of the Seventh Workin%Conference on Reverse Engineering (WCRE'00)
1095-1350/00 $10.00 © 2000 IEE

Representing objects in C++ can is done using the fol- e Control Integration deals with making tools available
lowing sections from the CppML representation: as distributed services.

¢ Repository Services deals with the persistency and

<! ELEMENT d ass %ecl aration;)*, BaseSpecifier*, .
(' on;) pect sharing of the processed data.

Tenpl at eAr gunent *) >
<I ATTLI ST d ass name CDATA>
<IENTITY % Decl aration "(Function| Variable)"> 5.1 Datalntegration

The mappings from CppML to OOML are: The term data integration refers to the features of the
ISME environment that enable new maintenance tools to
be built using common program representations and allow
existing tools to communicate and exchange data. When

talking about data integration it is important to make the
distinction between two separate concepts: Source Domain

Model integration and Analysis Domain Model integration.
In Source Domain Model integration there is a need to use
a common representation that all registered tools can use
5 AnlIntegrated SoftwareMaintenance Envi- as input for their software maintenance tasks. Similarly, in
ronment Analysis Domain Model there is a need to create represen-
tations so that analysis results from registered tools can be

The Integrated Software Maintenance Environment modeled gnd automatically usg:d as input to 'othertools.
(ISME) is an environment that facilitates collaborative _ BY having such representations available itbecomes pos-
software maintenance activities. The environment allows SiPle to perform a variety of maintenance tasks. First of all,
source code to be represented in the form of DOM trees,/@nguage-specific tools can be developed using the XML
and provides means for CASE tools to register their services'€Presentation for that language. When tools use a com-
with specific entities of the source code domain model. MON representation, it is easier to compare software main-
For example a tool that computes cyclomatic complexity tenance and a'naIyS|s algorlthms WIthOUF havmg to worry
metrics can be registered as a service associated with th@P0out the details of parsing the source files directly. Sec-
Met hodDecl ar at i on language entity. Hence, source ondly, Ianguage-mdepgndent tool§ can be developeq that
code entity nodes are linked with CASE tool services regis- PEfOrm generic analysis for a variety of sources. Thirdly,
tered in the Integrated Software Maintenance Environment,tN€ language-specific and higher-level languages can be
In this environment a variety of new software maintenance YSed t0 exchange data between existing tools. Finally, it
tools can be developed for specific programming languagedS ©asier to create maintenance-specific representations that
using XML representations as discussed in the previous secextend the Iangqage-spemflc representations to facilitate for
tion. Another feature of this environment s the ability toin- €Xchange of maintenance results.
tegrate existing tools by making use of these common XML .
representations. The tool integration is taken a step further>-2 COntrol Integration

by creating a distributed service manager module that al- . .
lows inputs and outputs for every tool in the environment. The term control integration encapsulates all the features

These services are aware of all other services in the envithat the ISME offers for creating and using distributed ser-
ronment and are able to communicate with other services inViceS out of software maintenance tools. In ISME, a ser-
order to perform more complex tasks via a control and dataViCe corresponds to a CASE tool that performs a specific
integration module. Services can be local or distributed, al- @Sk In order for a service to become part of the ISME
lowing tool developers to share the ISME environment and environment we need to describe its functionality, its input

the corresponding registered CASE tools with other devel- 2nd output. In this section we explain how services can be
opers in a collaborative manner. An XML schema can be created and localized, how they can register/deregister with

used to model and represent input and output data for thet"® €nvironment, how they can be configured dynamically

Class— Class

Class.name- Class.ldentifier
Function— Method
Variable— Variable

registered CASE tools. and how they can be invoked {;\s.part of a more complex
The features of ISME can be grouped in the following task. In our attempt to re'use'eX|st|n.g technologies some o'f.
three distinct categories: the concepts presented in this section are based on the Jini

architecture[Jini] proposed by Sun Microsystems.
o Data Integration deals with program representations Before we proceed to the details of the services we
and how they can be used to enable tools to communi-present the key features of a service in the ISME environ-
cate. ment namely, services that are distributed, dynamic, secure,

Proceedings of the Seventh Workin%Conference on Reverse Engineering (WCRE'00)
1095-1350/00 $10.00 © 2000 IEE

. e 1
| Hiule [e
[| Servlel =one reg _..'- T |
T} s ; .
I !' i'f-:".-.: :_. | =
x EJE | I ey iy
, Cees

] :::.:-

Entermnal = ¥ _'r_-:-p-- a
| . . _1 FTHE

Figure 2. Architecture for service integration Figure 3. Screen shot of the prototype ISME.

using the ECA paradigm.

large amounts of storage, as well as techniques to access

and easy to use and to integrate. Distributed means tha@nd update the data in an easy and fast manner. The sec-
services (i.e. CASE tools) can exist in any machine on theond requirement is that of version control. It is necessary
network. Users are able to select the right service by ex-to keep track of different versions of software that has been
amining their descriptions and then provide the input and analyzed in the same way it is done for software that is de-
receive the output. Dynamic means that services can beveloped. The third and final requirement is that of shared
added and removed to and from the ISME environment ataccess. The nature of the ISME environment will allow
any time without having to stop and restart the whole envi- multiple users to access and work on the same data. A safe
ronment. In addition, the services can be configured dy-way of sharing the same data is of great importance.
namically to accommodate for updated features and new In the ISME environment most of the data exists either
security requirements. Secure, means that features are inin plain text format or in XML format. A variety of services
plemented to make services available to a selected grougfor storing the data are provided within the ISME. These
of users based on access control lists. Finally, the ease o$ervices can exist locally or they can be accessed through
use and ease of integration can be accomplished by usinghe network as previously described. The first option is to
the Event Condition Action (ECA) paradigm. Using ECA use plain text files with some versioning software like RCS
it will be possible to define transactions that will involve [RCS]. Another approach is to take advantage of the ef-
the combined use of many services [Mylo96]. Service in- ficiency and scalability that database management systems
tegration enables us to combine existing services in orderoffer. Using a database like DB2 with the XML Extender
to define new and more complex ones. To provide support{DB2XML] software we are able to store and index entire
for this, ISME uses transactions and events as specified ilXML documents in a relational database which offers per-
the Jini architecture, as well as the Event-Condition-Action sistent storage. This approach is very efficient for large doc-
(ECA) paradigm as presented in [Gregory00]. Jini speci- uments that need to be searched and updated frequently.
fies a transaction protocol in which a series of operations

within one or multiple services can be Wrapped in a.single 6 Prototype

transaction. The proposed service integration architecture

is depicted in Fig.2. . . .
A prototype environment was built using the Java pro-

i i gramming language. The reasons for selecting Java are nu-
5.3 Repository Services merous. First of all, the prototype is able to run on a vari-
ety of platforms for which a Java virtual machine has been
The need to perform maintenance tasks in large and com<developed. Secondly, integration with distributed technolo-
plex software systems imposes more requirements on theyies such as Jini will be easier. Finally, the majority of the
environmentin which these maintenance tasks are to be persupporting technologies are readily available for Java. By
formed. The first and most important one, is that of efficient supporting technologies we refer to technologies such as
storage. Efficient in this context encapsulates the need forXML APIs, DTD viewers and XSLT tools to name a few.

Proceedings of the Seventh Workin%Conference on Reverse Engineering (WCRE'00)
1095-1350/00 $10.00 © 2000 IEE

Figure 4. Invocation of the Rigi tool from Figure 5. Invocation of the Together C++ tool
ISME. from ISME.

The core part of the prototype is the XML tree viewer as Resul t CDATA #REQUI RED>
shown in Fig. 3. The prototype is able to read JavaML,))) .
CppML and OOML representations from source files or In the following gubsecthns we illustrate five S|mple.ser-
from a DB2 Universal database for which there exists an YIC€S currently registered with the prototype ISME environ-
XML to DB2 schema translator. Once a representation is ment. The fI.I’St three services correspongl to tools that com-
loaded, the user is able to invoke tools that are registeredPUt¢ thefan-in, fan-out, andMcCabe metric. The fourth
to operate on the current representation. All tools are reg-and fifth services correspond to the Rigi and Together visu-
istered in a central repository and for each tool there exists@/1Zation tools.
a description and the input and output format. In addition,]
each tool can be registered to handle specific events depend-1 Registered Tools
ing on what part of the tree these events originated from.
All the tools that are registered in the ISME prototype are ~ Simple tools that calculate software metrics were devel-
linked to buttons on the toolbar at the top of the screen. oped to demonstrate how the ISME environment facilitates
In Fig. 3, a CppML representation of a source program is software maintenance. These tools were developed to op-
loaded, and one of the five buttons on the toolbar (left top) erate on the OOML representations and therefore they can
that represent registered tools is enabled. Each button corbe used to compute metrics for both Java and C++ source
responds to a different CASE tool registered in the ISME files. Once a source file has been parsed and the correspond-
environment and can be active for the current source codeng representation (JavaML or CppML) has been generated
entity selection. This means that only one tool is registered then the mapping tool is used to generate the OOML rep-
to handle this type of trees. In this case the tool maps theresentation. All the information the tools need is available
CppML representation to the higher level OOML. Once a in the OOML representation and the developer saves time
tool is invoked the results are displayed in the right panel by implementing the tools only once. It must be noted that
inside a textbox. In the current prototype, there is support not all tools will be able to operate at the OOML level. The
for storing the analysis results as an XML file. This storing ones described here were intentionally selected to demon-
is achieved by using a very simple DTD as shown below. strate this point.
This DTD enables the user to save the analysis type and Fan-in

results associated with any element of the tree. For any given function, this tool computes the total num-
ber of functions in the program that call the currently se-
<! ELEMENT Results (Anal ysis*)> lected function. This can be simply computed by counting
<I ATTLI ST Results SourceFil e CDATA #| MPLI EDthe number of MethodCall elements (with the correct identi-
<! ELEMENT Anal ysi s EMPTY> fier) in the OOML representation. In addition we define the
<! ATTLI ST Anal ysi s fanin of a Class to be the sum of all the method fanins con-
Type CDATA #REQUI RED tained within the Class. Similarly we can define fanin for
Appl i esTo CDATA #REQUI RED source elements. All this means is that the fanin tool is able
10

Proceedings of the Seventh Workin%Conference on Reverse Engineering (WCRE'00)
1095-1350/00 $10.00 © 2000 IEE

to perform it analysis omvet hod, d ass and Sour ce as defined in the corresponding language DTD. Moreover,
elements. Inside the prototype ISME once a OOML repre-the DOM tree can be easily traversed and analyzed by using
sentation has been loaded and the user selects an approprialava or C++ libraries that are publicly available.
node then the fanin tool on the toolbar becomes enabled. CASE tools can be associated with specific language
Fan-out DTD entities and be activated only for these specific enti-
Fanout is very similar to how fan-in works. However in this ties. In this context we have developed a prototype con-
case fanout represents the number of calls to other functiongrol integration architecture, where various CASE tools can
that originate from a given function. As before, we can de- be invoked by the unified interface. The XML annotated
fine the fanout metric for Classes and Sources. The fanousource code, its corresponding DOM tree, and the regis-
tool is also registered to handle events that originate from tered tools form an Integrated Software Maintenance Envi-
Met hod, Cl ass andSour ce elements. ronment (ISME) by analogy to an Integrated Development
M cCabe Cyclomatic Complexity Environment (IDE).
The Cyclomatic Complexity or McCabe function as it is On-going and future work involves extending the cur-
more commonly known computes a number that describesrent prototype environment to support representations for
how complex the given function is. To calculate this met- languages like Pascal, Cobol and PLIX. Finally, new tools
ric the possible execution paths for the function are deter- can be added to the environment and linked using the ECA
mined by examining all the conditional statements and their control integration paradigm. The prototype has been de-
interleavings. The result is defined to be the number of veloped at IBM Canada, Center for Avdanced Studies, and
possible paths - 1. It should be noted that the Cyclomatic is being linked for further evaluation with Visual Age for
Complexity tool in ISME is registered and active only with Java and Visual Age C++ compilers.
Met hodDecl ar at i on elements and not witki | e or
d a'ssDe;cI ar at i on source code domain model entities. References
Visualization Tools
Another category of tools we have integrated with the en-
vironment deals with visualization tools. In particular we
have integrated in the ISME thgi and theTogether C++
tools. The Rigi tool is active for th®r ogr am entities,
while the Together C++ tool is activated for thel e and

Pr ogr amentities. In Fig.4 a Rigi invocation session for [Devanbu96] P.T. Devanbu, D. S. Rosenblum, A.L. Wolf.

[Aho86] A. V. Aho, R. Sethi, and J.D. UllmarCompiler
Principles, Techniques, and Tools. Addison-Wesley
Publishing Company, Reading, Massachusetts,
1986.

use relations betweell assDecl ar at i on objects is de- "Generating Testing and Analysis Tools with Aria”,
picted. Similarly, in Fig.5 an invocation of the Together ACM Transactions on Software Engineering and
tool depicting the object model ofr ogr amis illustrated. Methodology, vol 5 no. 1, January 1996

New tools can be added as DTD schema extensions by spec-

ifying their name and their invocation signature. [Datrix] BELL Canada, Datrix Group, "Abstract Semantic

Graph Reference Manual”, Version 1.3

7 Conclusion [Rigi] University of Victoria, "Rigi” at URL:

http://rigi.uvic.ca, May 2000
Program representation plays an important role on build- .
ing tools that facilitate software analysis and software main- [HOIt98] R. Holt. "An Introduction to TA: The

tenance. One of the most popular representations is the Ab- Tupple-Attribute Language” at URL:
stract Syntax Tree. However, building complete Abstract http://plg.uwaterloo.ca/ holt/papers/ta.html,
Syntax Trees (AST) for program analysis purposes requires November 1998

not only a full parser but also customized semantic actions - I
to be added to this programming language parser so thatthéBradleygs]. N. Bradley, *The XML Companion’,
AST can be easily analyzed and traversed by CASE tools. Addison-Wesley, 1998

In this paper, we have presented an alternative to building[W3CXML] World Wide Web Consortium, "Exten-
Abstract Syntax Trees as a program representation scheme sible Markup Language (XML)’ at URL:
is to define a language model in terms of a DTD and au- http://www.w3.0rg/XML, September 1999
tomatically annotate source text with XML tags. An XML

parser is used to parse the XML annotated source code anfDOMspec] World Wide Web Consortium, "Document

create a DOM tree that corresponds to an annotated AST. Object Model (DOM) Level 1 Specification Ver-
The benefit of using XML in this context is that the cor- sion 1.0” at URL: http://www.w3.0rg/DOM, Octo-
responding tree conforms with the language domain model ber 1998

11

Proceedings of the Seventh Workin%Conference on Reverse Engineering (WCRE'00)
1095-1350/00 $10.00 © 2000 IEE

[SAXspec] Megginson Technologie

[Alphawors] IBM Corporation, "Alphaworks” at URL:
http://www.alphaworks.ibm.com, May 2000

[JavaCC] Sun Microsystems, "JavaCC The Parser Genera-
tor”, at URL: http://www.metamamta.com/JavaCC,
May 2000

[VACpp] IMB Corporation, "VisualAge for C++" at
URL: http://www.ibm.com/software/ad/vacpp,
September 1999

[XSLT] World Wide Web Consortium, "XSL Trans-
formations (XSLT) Version 1.0" at URL:
http://iwww.w3.0rg/TR/xslt, November 1998

[DB2XML] IBM Corporation, "DB2 XML Ex-
tender” at URL: http://www.ibm.com /soft-
ware/data/db2/extenders/xmlext/

[Jini] Sun Microsystems, "Jini Architecture Specifica-
tion”, edition 1.0.1, November 1999

[Gregory00] R. Gregory, K. Kontogiannis, "Customiz-
able Service Integration in Web-enabled Environ-
ments’s, "SAX 2.0: The Simple API for XML” at
URL: http://www.meginson.com/SAX/, May 2000
, To be published, April 2000

[Mylo96] J. Mylopoulos, A. Gal, K. Kontogiannis, M.
Stanley. A Generic Integration Architecture for
Cooperative Information Systems. Rroceedings
of Co-operative Information Systems 96. Brussels,
Belgium, 1996

[Pressman97] Pressman, R., Software Engineering: A
Practitioner’s Approach

[RCS] GNUProject, "Revision Control System (RCS)”, at
URL: http://www.gnu.org/software/rcs/rcs.html

[Ferrante87] J. Ferrante, K. J. Ottenstein and J. D. War-
ren. "The program dependence graph and its use in
optimization”, ACM Transactions on Programming
Languages and Systems, vol 9 no. 3, July 1987

[Holt00] R. C. Holt, A. Winter, A. Schurr. "GXL: Toward
a Standard Exchange Format”, To appear in WCRE
2000: Working Conference in Reverse Engineering,
Brisbane, Australia, November 2000

[Refine] Reasoning Inc. "CBMS WhitePaper” at URL:
http://www.reasoning.com/tech/tech.html

12

Proceedings of the Seventh Workin%Conference on Reverse Engineering (WCRE'00)
1095-1350/00 $10.00 © 2000 IEE

