
Designing Pixel-Oriented Visualization
Techniques: Theory and Applications

Daniel A. Keim

AbstractÐVisualization techniques are of increasing importance in exploring and analyzing large amounts of multidimensional

information. One important class of visualization techniques which is particularly interesting for visualizing very large multidimensional

data sets is the class of pixel-oriented techniques. The basic idea of pixel-oriented visualization techniques is to represent as many

data objects as possible on the screen at the same time by mapping each data value to a pixel of the screen and arranging the pixels

adequately. A number of different pixel-oriented visualization techniques have been proposed in recent years and it has been shown

that the techniques are useful for visual data exploration in a number of different application contexts. In this paper, we discuss a

number of issues which are of high importance in developing pixel-oriented visualization techniques. The major goal of this article is to

provide a formal basis of pixel-oriented visualization techniques and show that the design decisions in developing them can be seen as

solutions of well-defined optimization problems. This is true for the mapping of the data values to colors, the arrangement of pixels

inside the subwindows, the shape of the subwindows, and the ordering of the dimension subwindows. The paper also discusses the

design issues of special variants of pixel-oriented techniques for visualizing large spatial data sets. The optimization functions for the

mentioned design decisions are important for the effectiveness of the resulting visualizations. We show this by evaluating the

optimization functions and comparing the results to the visualizations obtained in a number of different application.

Index TermsÐInformation visualization, visualizing large data sets, visualizing multidimensional and multivariate data, visual data

exploration, visual data mining.

æ

1 INTRODUCTION

INFORMATION visualization techniques are becoming in-
creasingly important for the analysis and exploration of

large multidimensional data sets. A major advantage of
visualization techniques over other (semi)automatic data
exploration and analysis techniques (from statistics, ma-
chine learning, artificial intelligence, etc.) is that visualiza-
tions allow a direct interaction with the user and provide an
immediate feedback, as well as user steering, which is
difficult to achieve in most nonvisual approaches. The
practical importance of visual data mining techniques is
therefore steadily increasing and basically all commercial
data mining systems try to incorporate visualization
techniques of one kind or the other (usually rather simple
ones). In the visualization community, a considerable
number of advanced visualization techniques for multi-
dimensional data have been proposed. Examples of visual
data exploration approaches include geometric projection
techniques such as parallel coordinates [28], [29], icon-based
techniques (e.g., [51], [12]), hierarchical techniques (e.g.,
[46], [54], [56]), graph-based techniques (e.g., [21], [15]),
pixel-oriented techniques (e.g., [31], [37], [39]), and combi-
nations thereof ([8], [7]). In general, the visualization
techniques are used in conjunction with some interaction
techniques (e.g., [17], [10], [3]) and, sometimes, also some
distortion techniques [55], [45] (cf. Section 2 for details).

When considering the proposed visualization techni-
ques, however, the question arises: Are the techniques just

some fancy ad hoc ideas or do they have a more formal
basis? Related questions are: Is there a systematic way of
developing them? And, if so, what are the specific design
goals and is there a formal way of describing them? The
questions are not only of intellectual interest, but important
for the field since they a allow a better understanding of the
existing techniques, a systematic development of new
techniques, and a more formal way of evaluating them. In
this paper, we describe the design goals behind developing
the different variants of pixel-oriented visualization techni-
ques. It is interesting that most of the design goals can be
formalized as optimization problems and the proposed
techniques are actually (possibly suboptimal) solutions of
the optimization problems. The formalization of the design
goals also make it possible to formally evaluate the quality
of the obtained solutions.

The rest of the article is organized as follows: In Section 2,
we provide an overview and classification of techniques for
visualizing large amounts of multidimensional data, in-
cluding a brief introduction to the basic idea of pixel-
oriented visualization techniques. Then, we discuss the
design issues which are important in developing the
different variants of the pixel-oriented technique: In
Section 3, we discuss the color mapping, in Section 4, the
arrangement of pixels inside the dimension subwindows, in
Section 5, the shape of the dimension subwindows, and, in
Section 6, the ordering and arrangement of the dimension
subwindows. We show that the design issues are complex
optimization problems and that the different variants of
pixel-oriented techniques optimize different criteria. In
Section 7, we discuss the special case of data sets with
some two-dimensional semantics. Again, the design goals
can be formally specified and the potential solutions be

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 6, NO. 1, JANUARY-MARCH 2000 59

. The author is with the Institute of Computer Science, University of Halle,
Kurt-Mothes-Str. 1, 06120 Halle, Germany.
E-mail: keim@informatik.uni-halle.de.

For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number 110867.

1077-2626/00/$10.00 ß 2000 IEEE

evaluated against them. Section 8 summarizes important
aspects of the article and discusses their potential impact on
future work in the area of information visualization.

2 VISUALIZING LARGE AMOUNTS OF

MULTIDIMENSIONAL DATA

In contrast to most other work in the visualization area, in
multidimensional visualization, there is no standard map-
ping into the Cartesian coordinate system since the data
does not have some inherent two- or three-dimensional
semantics. In this section, we provide a brief overview of
multidimensional visualization techniques and introduce a
classification of the existing techniques (cf. Section 2.1).
Then, we discuss the basic ideas of the pixel-oriented
techniques in more detail (cf. Section 2.2).

2.1 Classification of Multidimensional Visualization
Techniques

Visualization of data which have some inherent two- or
three-dimensional semantics has been done even before
computers were used to create visualizations. In his well-
known books [58], [59], Tufte provides many examples of
visualization techniques that have been used for many
years. Since computers are used to create visualizations,
many novel visualization techniques have been developed
and existing techniques have been extended to work for
larger data sets and make the displays interactive. For most
of the data stored in databases, however, there is no
standard mapping into the Cartesian coordinate system
since the data has no inherent two- or three-dimensional
semantics. In general, relational databases can be seen as
multidimensional data sets with the attributes of the
database corresponding to the dimensions. The techniques
for visualizing multidimensional data sets can be best
classified using three orthogonal criteria: the visualization

technique, the distortion technique, and the interaction
technique (cf. Fig. 1). Orthogonality means, in this context,
that any of the visualization techniques can be used in
conjunction with any of the distortion, as well as any of the
interaction techniques. The visualization techniques can be
divided into geometric projection, icon-based, pixel-based,
hierarchical, and graph-based techniques. Well-known
examples of geometric projection techniques include scat-
terplot matrices and coplots [5], [18], landscapes [62],
prosection views [23], [57], hyperslice [61], and parallel
coordinates [28], [29]; examples of icon-based techniques
are stick figures [51], shape-coding [12], and color icons [43],
[37]; examples of pixel-oriented techniques are the spiral
[37], [33], recursive pattern [39] and circle segment
techniques [4]; examples of hierarchical techniques are
dimensional stacking [46], treemap [56], [30], and cone-trees
[54]; and examples of graph-based techniques are cluster-
and symmetry-optimized, as well as hierarchical graph
visualizations [15], [14]. In addition to the visualization
technique, for an effective data exploration, it is important
to use some interaction and distortion techniques. The
interaction techniques allow the user to directly interact
with the visualization. Examples of interaction techniques
include interactive mapping [16], [11], projection [8], [11],
filtering [7], [20], [24], zooming [13], [9], and interactive
linking and brushing [60], [63]. Interaction techniques allow
dynamic changes of the visualizations according to the
exploration objectives, but they also make it possible to
relate and combine multiple independent visualizations.
Note that connecting multiple visualizations by linking and
brushing, for example, provides more information than
considering the component visualizations independently.
The last criterion of the classification helps in the interactive
process of exploration by providing means for focusing
while preserving an overview of the data. The basic idea of
distortion techniques is to show portions of the data with a

60 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 6, NO. 1, JANUARY-MARCH 2000

Fig. 1. Classification of multidimensional visualization techniques.

high level of detail while others are shown with a much

lower level of detail. A number of simple and complex

distortion techniques may be used for this purpose [42].

Examples are the perspective wall [49], bifocal lens [6], table

lens [52], fisheye view [25], [55], hyperbolic tree [44], [45],

[47], and hyperbox techniques [2].
This brief introduction of our classification and the

enumeration of examples is aimed at providing a more

structured understanding of the large number of available

multidimensional visualization techniques. It can also be

used as a starting point to compare the available techniques,

to improve existing techniques, and to develop new

techniques. To provide a starting point for such a compar-

ison, in Fig. 2, we provide a preliminary and subjective

comparison table1 which is trying to compare a number of

visualization techniques. The comparison of the visualiza-

tion techniques is based on their suitability for certain

. data characteristics such as number of dimensions
(attributes), number of data objects, and suitability
for categorical data,

. task characteristics such as clustering and multi-
variate hot spots,

. visualization characteristics such as visual overlap
and learning curve.

A more detailed description of the classification and

examples can be found in tutorial notes on visual data

exploration [34], [35]. In the following, we introduce the

class of pixel-oriented techniques in more detail.

2.2 Pixel-Oriented Techniques

The basic idea of pixel-oriented techniques is to map each
data value to a colored pixel and present the data values
belonging to one dimension (attribute) in a separate
subwindow (cf. Fig. 3). Since, in general, our techniques
use only one pixel per data value, the techniques allow us to
visualize the largest amount of data which is possible on
current displays (up to about 1,000,000 data values). All
pixel-oriented techniques partition the screen into multiple
subwindows. For data sets with m dimensions (attributes),
the screen is partitioned into m subwindowsÐone for each
of the dimensions. In the case of a special class of pixel-
oriented techniquesÐthe query-dependent techniquesÐan
additional (m� 1)th window is provided for the overall
distance. Inside the windows, the data values are arranged
according to the given overall sorting, which may be data-
driven for the query-independent techniques or query-
driven for the query-dependent techniques. Correlations,
functional dependencies, and other interesting relationships
between dimensions may be detected by relating corre-
sponding regions in the multiple windows.

To achieve that objective a number of design problems
have to be solved. The first problem is the mapping of data
values to colors. A good mapping is obviously very
important, but has to be carefully engineered to be intuitive.
A second important question is how the pixels are arranged
inside the subwindows. The arrangement depends on the
data and the task of the visualization and, therefore,
different arrangements are useful for different purposes.
As we discuss in Section 4, the arrangement problem can be
described formally as an optimization problem and
different visualization techniques optimize different var-
iants of the optimization problem. A third question is the
shape of the subwindows. With the rectangular shape of the
subwindows as given in Fig. 3, for data sets with a large
number of dimensions (attributes), the subwindows for the
different dimensions are quite distant and, therefore, it
becomes difficult to find interesting relationships between
the dimensions. Again, shape of subwindows can be seen as
an optimization problem and, in Section 5, we introduce a
visualization technique which better solves this problem.
The next question in designing the pixel-oriented techni-
ques is how to order the subwindows for the dimensions
(attributes). In most applications, there is no natural
ordering of the dimensions. To detect dependencies and
correlations between the dimensions represented in the

KEIM: DESIGNING PIXEL-ORIENTED VISUALIZATION TECHNIQUES: THEORY AND APPLICATIONS 61

1. Disclaimer: The comparison table expresses the authors personal
opinion obtained from reading the literature and experimenting with
several of the described techniques. Many of the ratings are arguable and
largely depend on the considered data, the exploration task, experience of
the user, etc. In addition, implementations of the techniques in real systems
usually avoid the drawbacks of the single techniques by combining them
with other techniques, which is also not reflected in the ratings.

Fig. 2. An attempt at comparing multidimensional visualization techni-

ques (++: very good, +: good, o: neutral, -: bad, ±: very bad).

Fig. 3. Basic arrangement of subwindows for data with six dimensions.

subwindows, it is best to place related dimensions next to
each other. This again is a difficult optimization problem
and, in Section 6, we show that this problem is even NP-
complete and propose a heuristic solution. Since there are a
large number of applications where data sets with some
two-dimensional semantics arise, in Section 7, we consider
this special class of applications. We formally describe their
design goals as optimization problems, propose a number
of potential solutions, and evaluate them against the design
goals.

3 COLOR MAPPING

Visualizing the data values using color corresponds to the
task of mapping a single parameter distribution to color.
The advantage of color over gray scales is that the number
of just noticeable differences (JNDs) is much higher [27].
Finding a path through color space that maximizes the
number of JNDs, but, at the same time, is intuitive for the
application domain is a difficult task. For our purpose of
mapping the distances to color, we can restrict the task to a
simpler, more solvable problem. From a perceptual point of
view, brightness is the most important characteristic for
distinguishing colors corresponding to a single parameter
distribution. Therefore, for our purpose, it is sufficient to
find a color scale with a monotonically increasing (decreas-
ing) brightness while using the full color range. The
parameters of the color mapping should therefore use a

monotonically decreasing brightness (intensity, lightness,
value), a color ranging over the full color scale (hue), and a
constant (full) saturation. We found experimentally that a
colormap with colors ranging from yellow over green, blue,
and red to almost black is a good choice for the colormap to
be intuitive.

For generating color scales, we used a linear interpola-
tion between a minimum and a maximum value for hue,
saturation, and value (intensity, lightness) within the
various color models. We first used the standard HSV and
HLS color models. The HSV color model is best described
by a single-hexcone and the HLS model by a double-
hexcone (see Fig. 4). Linear interpolations within these color
models, however, do not provide color scales with a
monotonically decreasing brightness. Fig. 5 shows HSV
and HLS color scales which are produced using a linear
interpolation algorithm. The color scales are generated
using a constant saturation, a decreasing value (intensity,
lightness), and a hue varying over the complete range. If the
generated HSV and HLS color scales are used in conjunc-
tion with our visualization techniques, brighter colors in the
visualizations do not necessarily denote lower data values.
If HSV and HLS color scales are mapped to gray-scale, their
nonmonotonicity becomes obvious (see Fig. 5).2

Unfortunately, linear interpolations within the HSV and
HLS color models do not produce color scales with
monotonically decreasing brightness. A closer considera-
tion of the HSV and HLS color models showed that one of
the reasons for the problems of those color models is the
discontinuities at the corners of the hexcones. We therefore
developed our own color model, which we call the HSI
model (H: Hue, S: Saturation, I: Intensity). The HSI color
model is a variation of the HSV model. In contrast to color
scales generated according to the HSV model, linear
interpolation within the HSI model provides color scales
whose lightness ranges continuously from light to dark (see
Fig. 5). This is achieved by using a circular cone instead of
the hexcone used in the HSV model (see Fig. 4), which
means that colors with constant intensity and saturation
form a circle. The hue is defined as the angle � between red

62 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 6, NO. 1, JANUARY-MARCH 2000

2. The standard mapping from color to gray-scale used by the X-
windows system is a linear combination of the RGB-values �Grey�r; g; b� �
0:34 � r� 0:5 � g� 0:16 � b� which tries to reflect the perceived brightness.
Note that the X-windows mapping to gray does not correspond to the gray
portion in either of the color models, which is defined as the corresponding
portion of the gray axis (center of the color cones).

Fig. 4. The HSI color model compared to the HSV and HLS models. (Adapted from [38] ßIFIP.)

Fig. 5. Color scales generated using different color models. (Adapted

from [38] ßIFIP.)

and the chosen color. When moving on a circle of the HSI
color cone, the red, green, and blue portion of the color
follow cosine-curves with phase-shifts of 2

3 � (see Fig. 6). If
intensity and saturation are both equal to 1, the cosine-
curves for each of the RGB-color-portions run between 0
and 1. Reducing the intensity means reducing the max-
imum of the cosine-curve. Reducing the saturation means
lifting the minimum of the cosine-curve (sat0). In terms of
the HSI color cone, the intensity is defined as the Euclidean
distance to the origin and the saturation as percentage of the
intensity �S0I �. In the HSV model, intensity and saturation are
determined by using the maximum and minimum of (red,
green, blue). In Fig. 6, I and S0 are marked in the HSI color
cone. Since I is proportional to I 0 and S0 proportional to S00,
the HSI color cone can also be described with I 0 and S00 as
defining axes, as done in Fig. 4.

In the following, we briefly describe the mathematical
definition of the HSI parameters (hue, saturation, intensity)
in terms of the RGB color components. The intensity can be
determined directly from the (red, green, blue)-compo-
nents. Since the cosine-curves for red, green, and blue have
phase-shifts of 2

3�, the square sum of �mr;mg;mb� is
constant and proportional to �intensityÿmid�2. The pro-
portionality constant �32� may be determined by using the
special case: saturation � 1.

�mr2 �mg2 �mb2� � const
) �mr2 �mg2 �mb2� � 3

2
� �intensityÿmid�2

) intensity � mid�
���
2

3
� �mr2 �mg2 �mb2�

r
:

To determine the saturation, we have to consider the
lower limit of the cosine-curves (c.f. sat0 in Fig. 6). sat0 only
yields values between 0 and intensity. To allow values
between 0 and 1, sat0 has to be normalized � sat0

intensity�.
Increasing this value causes a shrinking of the amplitude of
the cosine-curves, which means that the equal portion of
red, green, and blue and, therefore, the white-portion of the
color increases. This is the inverse of the normal use of the
term saturation. The saturation is therefore defined as

saturation � 1ÿ sat0

intensity

� sat00

intensity
� 2� �intensityÿmid�

intensity
:

The hue is determined by using the scalar product
between the vector from the gray axis to red and the vector
from the gray axis to the color-point. The point on the gray
axis corresponding to a color point (red, green, blue) is

calculated as red�green�blue
3 . The vector from the gray axis

�13 ; 1
3 ;

1
3� to red �1; 0; 0� results in �23 ;ÿ 1

3 ;ÿ 1
3�, which is

equivalent to �2;ÿ1;ÿ1� when used in the scalar product.
The vector from the gray axis �mid;mid;mid� to the color-
point �red; green; blue� results in �mr;mg;mb�. The angle �
is calculated as

cos� � �2;ÿ1;ÿ1� � �mr;mg;mb�
j�2;ÿ1;ÿ1�j � j�mr;mg;mb�j

) hue � arccos
�2�mrÿmgÿmb����

6
p �

�������������������������������������
mr2 �mg2 �mb2

p !
:

The algorithms for generating HSI color scales and for
converting HSI to RGB and vice versa are provided in [38].
The parameters for generating the color scales presented in
Fig. 5Ðincluding the HSI color scale used for the visualiza-
tions presented in rest of this articleÐare shown in Table 1.
Since the usefulness of colormaps varies depending on the
user and the application, we allow the users to define their
own colormaps and use them instead of our standard
colormap.

4 ARRANGEMENT OF PIXELS

The second and very important question is how the pixels
are arranged within each of the subwindows. This is
important since, due to the density of the pixel displays,
only a good arrangement will allow a discovery of clusters
and correlations among the dimensions. For the arrange-
ment problem, we have to distinguish between data sets
which have a natural ordering of data objects (such as in
time-series data) and data sets, without inherent ordering
(as in the case of query responses).

4.1 Naturally Ordered Arrangement

For naturally ordered data sets, we assume having an
ordered sequence of n data objects fa1; . . . ; ang, each
consisting of k data values fa1

i ; . . . ; aki g. In one of the
subwindows, we want to present all the values fai1; . . . ; aing.
The problem can then be formally defined as

Definition 1 (Pixel Arrangement Problem of naturally
ordered data). The pixel arrangement problem (of
naturally ordered data) is the problem of finding a mapping
of the data objects fak1; . . . ; akng to a subwindow of size
�w� h�, i.e., a bijective mapping f : f1 . . .ng ! f1 . . .wg �
f1 . . .hg such that

Xn
i�1

Xn
j�1

����dÿf�i�; f�j��
ÿ d
�
�0; 0�; w �

�������������
jiÿ jj
n

r
; h �

�������������
jiÿ jj
n

r !�����

KEIM: DESIGNING PIXEL-ORIENTED VISUALIZATION TECHNIQUES: THEORY AND APPLICATIONS 63

Fig. 6. The HSI color model. (Adapted from [38] ßIFIP.)

TABLE 1
Parameters for Generating Color Scales Presented in Fig. 5

is minimal, where d�f�i�; f�j�� is the Lp-distance of the pixels
belonging to ai and aj.

The definition describes the pixel arrangement problem
as an optimization problem which tries to determine the
arrangement of pixels which best preserves the distance of
the one-dimensional ordering in the two-dimensional
arrangement. The optimization formula therefore sums up
over the Lp-distances of all pixels and normalizes them by
the minimum distance of the two pixels in a rectangular
subwindow of proportions �w� h� (second part of the
equation).

Mappings of ordered one-dimensional data sets to two
dimensions have already attracted the attention of mathe-
maticians long before computers came into existence. So-
called space-filling curves try to solve exactly the above
optimization problem and it is well-known that the Peano-
Hilbert curve [50], [26] is among the space-filling curves
which provide the best optimization of the above formula.
In our first experiments, we therefore used the Peano-
Hilbert curve (cf. Fig. 7a) to present the data. In Fig. 7b, we
show an example of a visualization of financial data using
the Peano-Hilbert curve. The database contains the prices of
the IBM stock, Dow Jones index, and Gold, as well as the
exchange rate between the US-Dollar and the German mark,
from September 1987 to February 1995, with nine data items
referring to one day. The database consists of 64,800 data
values (16,200 data entries per dimension). Although the
Peano-Hilbert curve provides a good clustering of the data,
in general, it is difficult to follow the curve and, therefore, it
is also difficult to relate the subwindows. We therefore also
used the Morton curve [48] which has more regularity and
is much easier to follow (cf. Fig. 8a). The resulting
visualizations (cf. Fig. 8b), however, show that the Morton
curve does not provide convincing results since the
arrangement is still not intuitive and the distances between
neighboring points are not preserved well enough.

Our solution to this problem, as first proposed in [39], is
based on the idea of generalizing a line and column-wise
arrangement by allowing the user to provide input in order
to obtain a semantic arrangement. If simple left-right or top-

down arrangements are used on the pixel level, in general,
the resulting visualizations do not provide useful results.
One possibility to improve the visualizations is to organize
the pixels in small groups and arrange the groups to form
some higher-order pattern. The basic idea of the recursive
pattern visualization technique is based on a general
recursive scheme which allows lower-level patterns to be
used as building blocks for higher-level patterns. In the
simplest case, the patterns for all recursion levels are
identical. In many cases, however, the data has some
inherent structure which should be reflected by the patterns
in the visualization. Consider, for example, time series data,
measuring some parameters several times a day over a
period of several years. It would be natural to group all data
objects belonging to one day in the first level pattern, those
belonging to one week in the second level pattern, those
belonging to one month in the third level pattern, and so on.
This, however, means that the technique must be defined in
a generic fashion, allowing user-provided parameters for
defining the structure of the patterns for the recursion
levels.

The recursive pattern visualization technique is based on
a simple back and forth arrangement: Let wi be the number
of elements arranged in the left-right direction on recursion
level i and hi be the number of rows on recursion level i.
Then, the algorithm can be described as follows:

First, wi patterns of recursion level �iÿ 1� are arranged in
left-right direction and this is repeated hi times in top-down
direction.

The pattern on recursion level i consists of level�iÿ 1�-
patterns and the maximum number of pixels that can be
presented on recursion level k is given by

Qk
i�1 wi � hi. In

general, the visualizations get more expressive by using
more recursion levels. Suppose a data set consists of data
values measured nine times a day for three consecutive
weeks. To visualize this data set using the ªrecursive
patternº algorithm, the user may enter the parameters
�w1; h1� � �3; 3� and �w2; h2� � �3; 7�, with the level�1�-
pattern describing a day and the level�2�-pattern represent-
ing the three weeks. For larger data sets, the user may

64 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 6, NO. 1, JANUARY-MARCH 2000

Fig. 7. Peano-Hilbert arrangement. (a) Peano-Hilbert curve. (b) Example

visualization. (Adapted from [33] ßAmerican Statistical Association.)
Fig. 8. Morton arrangement. (a) Morton curve. (b) Example visualization.

(Adapted from [33] ßAmerican Statistical Association.)

repeat this procedure, either by enlarging the size of the
second level pattern (e.g., �w2; h2� � �28; 54�, which corre-
sponds to four weeks per row) or by adding additional
recursion levels denoting months, years, decades, and so
on. A schematic example for a highly structured arrange-
ment using five recursion levels is provided in Fig. 9 and
the resulting visualization is shown in Fig. 10. The data
used in the example is the same as shown in Fig. 7b and
Fig. 8b. The parameter settings of the recursive pattern
visualization technique represent a semantic arrangement,
i.e., they are chosen such that the level�1�-pattern represents
one day, the level�2�-pattern one week, the level�3�-pattern
one month, and the level�4�-pattern one year. In the
resulting visualization, the eight horizontal bars correspond
to the eight years and the subdivision of the bars to the
12 months within each year. By having this structure in the
visualization, it is easy to get detailed information from the
dense pixel display. The user may, for example, easily see
that the gold price was very low in the sixth year, that the
IBM price quickly fell after the first one and a half months,
that the US-Dollar exchange rate was highest in June 1989,
etc. These are only a few examples for useful information
which can be directly derived from the visualization.

4.2 Query Dependent Arrangement

Even if each pixel of the display is used to represent one
data value, the amount of information that can be
represented using pixel-oriented techniques is still rather
limited. The basic idea of query dependent visualization
techniques is to visualize only the data which is relevant in
the context of a specific query. Simple queries against the
database can be described as regions in the k-dimensional
space defined by the k dimensions (attributes) of the data. If
exactly one query value is specified for each dimension, the
query corresponds to a point in k-dimensional space; if a
query range is specified for each dimension, the query
corresponds to a region in k-dimensional space. The data
objects which are within the query region form the result of
the query. In most cases, the number of results cannot be
determined a priori; the resulting data set may be quite
large, or it may even be empty. In both cases, it is difficult
for the user to understand the result and modify the query
accordingly. To give the user more feedback on the query,
we therefore do not only present the data objects which are
within the query region, but also those which are ªcloseº to

the query region and only approximately fulfill the query.

For determining the approximate results, distances between

the data and query values are calculated. The distance

functions are data type and application dependent. For

numeric types such as integer or real and other metric types

such as date, the distance of two values is easily determined

by their numerical difference. For other types such as

strings, multiple distance functions such as the lexicogra-

phical difference, character-wise difference, substring dif-

ference, or even some kind of phonetic difference may be

useful. The distance calculation yields distance tuples

�d1
i ; d

2
i ; . . . ; dki � which denote the distances of the data object

ai to the query. We extend the distance tuples by a distance

value dk�1
i , denoting the overall distance of a data object to

the query. The value of dk�1
i is zero if the data object is

within the query region; otherwise, dk�1
i provides the

distance of the data object to the query region. For

combining the distance values �d1
i ; d

2
i ; . . . ; dki � into the

overall distance value dk�1
i , user-provided weighting factors

�w1; w2; . . . ; wk� are used to weight the distance values

according to their importance. The distance tuples

�d1
i ; d

2
i ; . . . ; dki ; d

k�1
i � are sorted according to the overall

distance dk�1
i and only the �mn�k�-quantile (where m is the

number of pixels of the display) of the most relevant data

objects is presented to the user.
The problem now is how the dimension values of the

most relevant data objects are arranged in the subwindows.

In principle, any of the techniques introduced in Section 4.1

can be used since the ordering according to the overall

distance dk�1
i from the query may be used as a one-

dimensional ordering. As first experiments with those

arrangements showed, however, in this case, the existing

arrangements, such as the Peano-Hilbert, Morton or

recursive pattern arrangement, do not provide convincing

results. The reason is that all techniques display the most

relevant data objects in a corner of the subwindows while

the user expects them in the center of the subwindows. The

pixel arrangement problem is, therefore, actually different

from the case of naturally ordered data and can be

formalized as follows:

KEIM: DESIGNING PIXEL-ORIENTED VISUALIZATION TECHNIQUES: THEORY AND APPLICATIONS 65

Fig. 9. Schematic representation of a highly structured arrangement

��w1; h1� � �3; 3�, �w2; h2� � �2; 3�, �w3; h3� � �4; 1�, �w4; h4� � �1; 12�,
�w5; h5� � �7; 1��. (Adapted from [39] ßIEEE.)

Fig 10. Five level recursive arrangement of financial data (September

1987-February 1995). (Adapted from [39] ßIEEE.)

Definition 2 (Pixel Arrangement Problem of query

dependent data). The pixel arrangement problem (of
query dependent data) is the problem of finding a mapping of
the data objects fak1; . . . ; akng to a subwindow of size �w� h�,
i.e., a bijective mapping f : f1 . . .ng ! f1 . . .wg � f1 . . .hg
such that

Xn
i�1

Xn
j�1

����d f�i�; f�j�� �

ÿ d
�
�0; 0�; w �

�������������
jiÿ jj
n

r
; h �

�������������
jiÿ jj
n

r !�����
is minimal where d�f�i�; f�j�� is the Lp-distance of the pixels
belonging to ai and aj, and

Xn
i�1

����d f�i�;
�w

2
;
h

2

�� �
ÿ d
�
�0; 0�; w

2
�
���
i

n

r
;
h

2
�
���
i

n

r !�����
is minimal where d�f�i�; �w2 ; h2�� is the Lp-distance of the pixel
belonging to ai from the center.

The first condition of Definition 2 is the same as in
Definition 1 and aims at preserving the distance of the one-
dimensional ordering in the two-dimensional arrangement
as much as possible. The second portion adds the constraint
that the distance to the center should correspond to the
overall distance (i.e., the ordering of the data objects) as
much as possible. The optimization formula sums up over
the Lp-distances of all pixels from the center �w2 ; h2� and
normalizes them by the minimum distance of the pixel in a
rectangular subwindow of proportions �w� h�.

A good solution for the second condition is a simple
Spiral Arrangement as first proposed in [40], [37]. The idea
of the simple spiral arrangement is to center the most
relevant data objects (data objects fulfilling the query) in the
middle of the window and less relevant data objects (data
objects approximately fulfilling the query) are arranged in a
rectangular spiral-shape to the outside of the window (cf.
Fig. 11a). Although the Spiral technique already provides
interesting results [37], it does not optimize the first
condition, with the result that the local clustering properties
of the spiral are rather week. Since the spiral is only one
pixel wide, it is perceptually impossible to detect small
clusters. The reason for this problem is that the mapping
from the ordered sequence of data objects to the position of
the pixels on the two-dimensional display does not preserve
locality. More specifically, the probability that two pixels
which are close together on the screen are also close
together in the one-dimensional ordered sequence of data

objects is rather low, which is exactly the constraint
expressed by the first condition of Definition 2. From
Section 4.1, we already know that arrangements which do
provide a maximum of locality preservation are space-
filling curves (Peano-Hilbert and Morton curve) or the
recursive pattern technique. A problem of those techni-
ques, however, is that the most relevant data objects are
placed in one corner of the visualization and that the
ordering of data objects does not become clear in the
visualization. So, the question remains: What is a good
solution optimizing both conditions?

Our solution is a combination of the Spiral and the
Peano-Hilbert or Morton techniques. The Generalized
Spiral-techniques retain the overall arrangement of the
original Spiral-technique, centering the most relevant data
objects in the middle of the screen, but enhancing the
clustering properties of the arrangement by using screen-
filling curves locally. This means, in case of the Generalized
Spiral technique, that the primary arrangement remains a
rectangular spiral shape (cf. Fig. 11a). In contrast to the
original technique, however, the spiral is composed of small
Peano-Hilbert- or Morton-like curves which make up the
secondary arrangement (cf. Fig. 11b and Fig. 11c). The
width of the spiral is determined by the size of the ªsmallº
curves. Note that the structure of the Peano-Hilbert and
Morton curve does not allow arbitrary widths since the
width is determined by the order of the Peano-Hilbert and
Morton curves �width � 2order�.

The advantage of improving the local clustering of
query-dependent visualization techniques by screen-filling
curves can be easily verified using visualization examples.
In Fig. 12, we provide an example visualization showing the
effect of using the Generalized Spiral technique over the
Spiral technique. The data set used consists of about 24; 000
test data objects with eight dimensions. Most of the data set
(20; 000 data objects) is randomly generated in the range
�ÿ100; 100�. The remaining 4; 000 data objects split up into
two clusters which are only defined on the first five
dimensions. The query used is �ÿ20; 20� for each of the
dimensions. Fig. 12a shows the visualization generated by
the Spiral-technique and Fig. 12b shows the visualization
generated by the Generalized Spiral technique with a width
of six pixels. In Fig. 12a, almost no clustering is visible,
while, in Fig. 12b, the clustering becomes quite obvious by
the similar structure in the first five dimensions.

66 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 6, NO. 1, JANUARY-MARCH 2000

Fig. 11. Spiral and Generalized Spiral technique. (a) Spiral technique.

(b) Peano-Hilbert spiral (width = 8). (c) Morton spiral (width = 8).

Fig. 12. Advantage of Generalized Spiral over Spiral technique. (a)

Spiral technique. (b) Generalized Spiral technique. (Adapted from [33]

ßAmerican Statistical Association.)

At this point, it should be mentioned that there are a
number of other query dependent arrangements such as the
Axes or Grouping techniques. The idea of the Axes
technique is to partition the data sets into four subsets
according to the direction of the distance for two dimen-
sions: For one dimension, negative distances are arranged
to the left, positive ones to the right and, for the other
dimension, negative distances are arranged to the bottom,
positive ones to the top. The Axes-technique may also be
improved using the same idea. The interested reader is
referred to [37] for the details of those techniques and [32]
discusses generalizations of those techniques and provides
more examples.

5 SHAPE OF SUBWINDOWS

The next important question is whether there exists an
alternative to the regular partitioning of the screen into
rectangular subwindows. The rectangular shape of the
subwindows allows a good screen usage, but at the same
time leads to a dispersal of the pixels belonging to one data
object over the whole screen. Especially for data sets with
many dimensions, the subwindows for the dimensions are
rather far apart, which makes it difficult to detect clusters,
correlations, etc. In the optimization functions described so
far, the distance between the pixels belonging to one data
object is not taken into account. This, however, is necessary
in order to find alternative shapes for the dimension
subwindows. The optimization goal may be expressed by
the following optimization function:

Definition 3 (Subwindow Shape Problem). The subwin-
dow shape problem is the problem of finding an appropriate
shape of the subwindows such that

1

n

Xn
l�1

1

k

Xk
i�1

Xk
j�1

d f ail
ÿ �

; f ajl

� �� � !
is minimal where d�f�ail�; f�ajl �� is the Lp-distance �p � 1; 2�
of two pixels ail and ajl belonging to two different dimensions.

The optimization problem tries to minimize the average
distance between the pixels belonging to the dimension of
one data object. The formula sums up all pairwise distances
between the pixels belonging to one data object and then
averages by the number of dimensions k to obtain an
average distance of all pixels belonging to one data object.

The outer sum runs over all data objects of the data set to
obtain an average value of the inner sum. In the case of the
rectangular arrangement used by the recursive pattern and
generalized spiral techniques, the inner sum is identical for
all data objects and, therefore, the outer sum is actually not
necessary. If the distances are, however, different for the
data objects of the data set, the outer sum is crucial to obtain
a useful optimization function.

An idea for an alternative shape of the subwindows
which optimizes the above function is the circle segments
technique. The fundamental idea of the ªcircle segmentsº
visualization technique is to display the data dimensions as
segments of a circle (cf. Fig. 13). If the data consists of k
dimensions, the circle is partitioned into k segments, each
representing one data dimension. The data objects within
one segment are arranged in a back and forth manner along
the so-called ªdraw_line,º which is orthogonal to the line
that halves the two border lines of the segment (cf. Fig. 14).
The ªdraw_lineº starts in the center of the circle and draws
the pixels from one border line of the segment to the other.
Whenever the ªdraw_lineº hits one of the border lines, the
ªdraw_lineº is moved in parallel along the segment-halving
line to the outside of the circle and the direction of the
ªdraw_lineº changes. This process is repeated until all data
objects of one dimension are visualized and, then, the whole
procedure is restarted for the remaining dimensions.

Fig. 16a provides an example of a circle segments
visualization showing 50 stock from the Frankfurt stock
index (FAZ) over a period of 20 year, resulting in about
265; 000 data values. Because of the high degree of overlap,
ªline graphsº are not suitable for visualizing this many
stacks (cf. Fig. 16c for a line graph of eight stocks with value
aggregated for one week). In Fig. 16b, we compare the
ªcircle segmentsº technique with the ªrecursive patternº
technique (cf. Fig. 16b). The main advantage of our new
technique is that the overall presentation of the whole data
set is better perceivableÐincluding potential dependencies,
analogies, and correlations between the dimensions. The
advantage can be easily seen in the comparison of Fig. 16,
but it can also be evaluated in terms of the optimization
function as expressed in Definition 3. If we compute the
average distance of the pixels belonging to one data object
for the circle segments and the recursive pattern techniques,
we see that the circle segments technique provides a better
optimization, especially for larger dimensionalities �k� (cf.

KEIM: DESIGNING PIXEL-ORIENTED VISUALIZATION TECHNIQUES: THEORY AND APPLICATIONS 67

Fig. 13. Alternative shape of subwindowsÐcircle segments.

Fig. 14. Circle segment technique for eight-dimensional data.

Fig. 15). This result shows the correspondence of the

mathematical forms and experimental results and confirms

the soundness of the optimization goal.

6 ORDERING OF DIMENSIONS

The next question to consider is the ordering of dimensions.

This problem is actually not just a problem of pixel-oriented

techniques, but a more general problem which arises for a

number of other techniques, such as the parallel coordinates

technique, as well. The basic problem is that the data

dimensions have to be positioned in some one- or two-

dimensional ordering on the screen and this is usually done

more or less by chanceÐnamely, in the order in which the

dimensions happen to appear in the data set. The ordering

of dimensions, however, has a major impact on the

expressiveness of the visualization. Consider, for example,

the parallel coordinates technique [28], [29]. If one chooses a

different order of dimensions, the resulting visualization

becomes completely different and allows different conclu-

sions to be drawn. Techniques such as the parallel

coordinates technique and the circle segments technique

require a one-dimensional ordering of the dimensions. In

case of other techniquesÐsuch as the recursive pattern

technique or the generalized spiral techniqueÐa two-

dimensional ordering of the dimensions is required.
The basic idea of our approach for finding an effective

order of dimensions is to arrange the dimensions according

to their similarity. For this purpose, we first have to define

similarity measures which determine the similarity of two

dimensions. These similarity measures may be based on a

partial or global similarity of the considered dimensions (cf.

Section 6.1). For determining the similarity, a simple

Euclidean or more complex (e.g., Fourier-based) distance

measures may be used. Based on the similarity measure, we

then have to determine the similarity ordering of dimen-

sions. After formally defining the one- and two-dimensional

ordering problems, we show that all variants of the

ordering problem are computationally hard (i.e., NP-

complete) problems (cf. Section 6.2). For solving the

problems, we therefore have to use heuristic algorithms

which are shown to work effectively for the circle segments

and recursive pattern techniques (cf. Section 6.3).

6.1 Similarity of Dimensions

The problem of determining the similarity of dimensions

may be characterized as follows: Let Ai be the set of all data

values fai1; . . . ; aiNg for dimension i �0 � i < k�. The simi-

larity of two dimensions S : IRN � IRN ! IR is a function

S�Ai;Aj� which determines a value for the similarity of Ai

68 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 6, NO. 1, JANUARY-MARCH 2000

Fig. 16. Twenty years of daily data of the FAZ Index (January 1974-April
1995). (a) Circle segments visualization of 50 stocks. (b) Recursive
pattern visualization of 50 stocks. (c) Line graph visualization of eight
stocks (one week aggregated into one value).

Fig. 15. Evaluation of the optimization function.

and Aj.
3 All meaningful similarity measures S must have

the following properties �0 � i < k�:
1. positivity: 8Ai;Aj 2 IRk : S�Ai;Aj� � 0.
2. reflexivity: 8Ai;Aj 2 IRk : �Ai � Aj� , S�Ai;Aj� � 0.
3. symmetry: 8Ai;Aj 2 IRk : S�Ai;Aj� � S�Aj;Ai�.
As outlined in [1], similarity is highly application

dependent. Depending on the application, one has to
consider global or partial similarity and invariance with
respect to translation or scaling. An example for a global
similarity measure which is translation invariant, is

Strans�Ak;Al� ���XNÿ1

i�0

�ÿ
aki ÿmean�Ak�

�ÿ ÿali ÿmean�Al�
��2

vuut ;

where

mean�Ai� � 1

N

XNÿ1

k�0

aki :

If one additionally demands invariance against scaling,
the dimension can be scaled independently such that the
maximum value of a dimension becomes 1 and the
minimum becomes ÿ1. Thus, scaling invariant global
similarity can be computed as

Sscaling�Ak;Al� �
���������������������������XNÿ1

i�0

�bki ÿ bli�2
vuut ;

where4

bij �
ai
j
ÿMIN�Ai�

MAX�Ai� ÿMIN�Ai� :

For most real-life applications, partial similarity mea-
sures are more appropriate than global ones. Imagine two
stock rates over time, say AT&T and IBM. Of course, there
will be weeks, or even months, where the two stocks show a
similar behavior, e.g., because some global development
(such as a black Friday) is going on. However, it is very
unlikely that the AT&T and IBM stocks behave similarly
over a period of 10 years. Therefore, we are actually
interested in periods where the AT&T and IBM stocks
behaved similarly. Thus, given the two dimensions Ak and
Al, in the most simple case, we are looking for

Ssync�Ak;Al� �

max
i;j

�
�jÿ i� j �0 � i < j < N� ^

���������������������������Xj
z�i
�bkz ÿ blz�2

vuut �
< ";

where bxy is defined as above and " is some maximum
allowed dissimilarity. This partial similarity measure uses
the length of the longest sequence, which is at least "-similar
(under scaling and translation invariance).

6.2 Similarity Ordering of Dimensions

The mapping of the dimensions into the visual representa-
tion is fundamental for the perception of the user. The
ordering of dimensions especially plays a significant role,
e.g., for the detection of functional dependencies and
correlations. It is therefore important to adequately arrange
the dimensions. In the following, we define the dimension
ordering problem mathematically as an optimization
problem which ensures that the most similar dimensions
are placed next to each other.

Depending on the considered visualization technique,
we have to distinguish between the one-dimensional and
the two-dimensional ordering problem. The one-dimen-
sional ordering problem occurs, for example, for the circle
segment techniques and the two-dimensional problem
occurs, for example, for the recursive pattern and general-
ized spiral techniques.5 In case of the one-dimensional
ordering problem, there are two slightly different variants
of the problemÐthe linear and the circular problem (cf.
Fig. 17). In the case of the linear one-dimensional ordering
problem, the first and last dimensions do not have to be
similar, whereas, in the case of the circular problem, the
dimensions form a closed circle, i.e., first and last dimension
have to be similar. In the following, we assume to have a
symmetric �k� k� similarity matrix

S �
S�A0; A0� . . . S�Akÿ1; A0�

..

. . .
. ..

.

S�A0; Akÿ1� . . . S�Akÿ1; Akÿ1�

264
375;

w h e r e S�Ai;Aj� � S�Aj;Ai� 8i; j � 0; . . . ; �kÿ 1� a n d
S�Ai;Ai� � 0 8i � 0; . . . ; �kÿ 1�. S�Ai;Aj� describes the
similarity between dimension i and dimension j. The
similarity matrix is the result of applying the global or
partial similarity measures introduced in Section 6.1. In
addition, we need a �k� k� neighborhood matrix

N �
n00 . . . n�dÿ1�0
..
. . .

. ..
.

n0�kÿ1� . . . n�kÿ1��kÿ1�

264
375;

which describes the neighborhood relation between the
dimensions in the ordering. The matrix N is also symmetric
(i.e., �nij � nji ^ nii � 0� 8i; j � 0; . . . ; �kÿ 1�) and

nij � 1 if dimensions i and j are neighbors
0 otherwise:

�
Now, we are able to define the general ordering problem as
follows:

Definition 4 (General Ordering Problem). For a given
similarity matrix S, the optimal ordering of dimensions is
given by a neighborhood matrix N such that

KEIM: DESIGNING PIXEL-ORIENTED VISUALIZATION TECHNIQUES: THEORY AND APPLICATIONS 69

3. One might also call S a dissimilarity measure because large numbers
mean high dissimilarity, whereas zero means identity.

4. In order to become more robust against outliers, instead of using
MAX (the 100 percent-quantile) and MIN (the 0 percent-quantile), we use
the 98 percent and 2 percent quantile of Ai.

5. Note that the same problem also occurs for other visualization
techniques which do not work on a pixel-oriented basis such as the parallel
coordinate technique.

Xkÿ1

i�0

Xkÿ1

j�0

nij � S�Ai;Aj�

is minimal.

This definition is a general notion of the problem which

defines the optimal ordering of dimensions. The specific

one- and two-dimensional ordering problems of the

existing visualization techniques, such as the parallel

coordinates, circle segments, and spiral techniques, are

instantiations of the problem. In the case of the one-

dimensional ordering problem, the neighborhood matrix

reflects either the linear (cf. Fig. 17a) or the circular ordering

of the dimensions (cf. Fig. 17b). The linear ordering problem

occurs, for example, in the case of the parallel coordinate

technique and the circular ordering problem occurs, for

example, in the case of the circle segments technique.

Definition 5 (One-Dimensional Ordering Problem). For a

given similarity matrix S, the optimal one-dimensional

ordering of dimensions is a permutation f��0�; . . . ; ��kÿ
1�g of the dimensions such that:

1. Circular Case:
Pkÿ1

j�0 S
ÿ
A��i�; A���i�1�modk�

�
is minimal.

2. Linear Case:
Pkÿ2

j�0 S
ÿ
A��i�; A��i�1�

�
is minimal.

In the case of the two-dimensional ordering of dimen-

sions, without loss of generality, we assume k � k1 � k2,

where k1 corresponds to the number of rows and k2

corresponds to the number of columns of the arrangement.

Then, the two-dimensional ordering problem can be

defined as follows:

Definition 6 (Two-Dimensional Ordering Problem). For a

given similarity matrix S, the optimal two-dimensional

ordering of dimensions is the arrangement ��i; j� �i �
1 . . . k1; j � 1 . . . k2� such that

Xk1ÿ2

i�0

Xk2ÿ1

j�0

S
ÿ
A��i;j�; A��i�1;j�

��Xk1ÿ1

i�0

Xk2ÿ2

j�0

S
ÿ
A��i;j�; A��i;j�1�

�
is minimal.

The first portion of the formula corresponds to the sum of

the distances in the rows and the second portion to the sum

of the distances in the columns of the two-dimensional

ordering.
In the following, we briefly discuss the complexity of the

one- and two-dimensional ordering problems. We show

that even the one-dimensional ordering problems are

computationally hard problems, i.e., they are NP-complete.

Lemma 1 (NP-Completeness of the Circular 1D Problem).
The circular variant of the one-dimensional ordering problem
according to Definition 5 is NP-complete.

Proof. The problem is obviously equivalent to the well-
known traveling salesman problem (TSP), which is
known to be NP-complete. We just have to map the
dimensions to cities, the similarity between the dimen-
sions to the cost of traveling between cities, and the
solution back to the ordering of dimensions. tu

In the case of the linear one-dimensional and the two-
dimensional ordering problems, the proofs of the NP-
completeness are more complex and will therefore be
provided in the appendix.

Lemma 2 (NP-Completeness of the Linear 1D Problem).
The linear variant of the one-dimensional ordering problem,
according to Definition 5, is NP-complete.

Proof. See Appendix. tu
Lemma 3 (NP-Completeness of the 2D Ordering Problem).

The two-dimensional ordering problem, according to Defini-
tion 6, is NP-complete.

Proof. See Appendix. tu
6.3 Dimension Ordering Algorithm

Since the dimension ordering problems are NP-complete,
we have to use heuristic algorithms to solve the problem.
Since the problems are all similar to the traveling salesman
problem, we can use variants of the existing heuristic
algorithm which have been proposed for the traveling
salesman problem, such as memetic and genetic algorithms,
tabu search, ant colony optimization, neural networks,
space-filling heuristics, or simulated annealing. For an
overview of these approaches, including an extensive
bibliography, see [53].

In our implementation, we use a variant of the ant
system algorithm, which is inspired by the behavior of real
ants [19]. Ants are able to find good solutions to shortest
path problems between a food source and their home
colony. Ants deposit a certain amount of pheromone while
walking and each ant probabilistically prefers to follow a
direction rich in pheromone. The pheromone trail evapo-
rates over time, i.e., it looses intensity if no more pheromone
is laid down by other ants.

In our variant of the algorithm, which was first proposed
in [1], we have transferred three ideas from natural ant
behavior to our artificial ant colony: 1) the trail mediated
communication among ants, 2) the preference for paths
with a high pheromone level, and 3) the higher rate of
growth of the amount of pheromone on shorter paths. An
artificial ant is an agent which moves from dimension to
dimension on the neighborhood graph where the length of
the edges equals to the distance (dissimilarity S) between
the corresponding dimension nodes. Initially, m artificial
ants are placed on randomly selected dimensions. At each
time step, they move to new dimensions and modify the
pheromone trail on the edges passed. The ants choose the
next dimension by using a probabilistic function depending
on both the trail accumulated on edges and on a heuristic
value which is chosen as a function of the edge length.

70 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 6, NO. 1, JANUARY-MARCH 2000

Fig. 17. One- and two-dimensional arrangement problems. (a) Linear

1D. (b) circular 1D. (c) 2D.

Obviously, the ants must have a working memory used to
memorize the dimensions already visited. When all ants
have completed a tour, the ant which made the shortest tour
modifies the edges belonging to its tour by adding an
amount of pheromone trail which is inversely proportional
to the tour length. This procedure is repeated for a given
number of cycles.

In our version of the ant colony system, an artificial ant k
at dimension r chooses dimension s to move to (s is among
the dimensions which do not belong to its working memory
Mj) by applying the following probabilistic formula:

s � maxu ���r; u�� � ���r; u���
n o

if �q � q0�
T otherwise;

(
where ��r; u� is the amount of pheromone trail on edge
�r; u�, ��r; u� is a heuristic function which is chosen to be the
inverse of the distance between dimensions r and u, � is a
parameter which weighs the relative importance of pher-
omone trail and of closeness, q is a value chosen randomly
with uniform probability in �0; 1�, q0 �0 � q0 � 1� is a
parameter, and T is a random variable selected according
to the following probability distribution, favoring dimen-
sions with small distances and higher levels of pheromone
trail:

pj�r; s� �
���r;u������r;u���P
u 62Mj

���r;u������r;u��� if �s 62Mj�
0 otherwise;

8<:
where pj�r; s� is the probability that ant j chooses to move
from dimension r to dimension s.

We applied this heuristic to arrange the dimensions
according to their distances. In the one-dimensional order-
ing case, the only difference between the linear and the
circular variant is that the tour consists of one more
dimension and that the ants move back to the starting
dimension. For the two-dimensional ordering problem, we
have to slightly modify the algorithm described above. Let
k1 be the number of rows and k2 be the number of columns
of the two-dimensional ordering and let us assume that we
map the sorted dimensions on the ordering in a row-wise
manner, always filling the rows from the left to right. Thus,
the k � k1 � k2 ordered dimensions are mapped to the
ordering such that the dimension number j is mapped to
column number 1� �jÿ 1�mod k2� � and to row number
dn=k2e. Let S�Ai;Aj� be the distance between dimension Ai

and dimension Aj and Mj�m� be the dimension in the mth
position in the working memory. Then, we modify the
heuristic function as

��r; u; n� �
1

S�Ar;Au� if dn=k2e � 1

1
S�Au;AMj�n�1ÿk2��

if �nÿ 1�mod k2 � k2 ÿ 1

1
2 � 1

S�Ar;Au� � 1
S�Au;AMj�n�1ÿk2��

� �
else:

8>>>><>>>>:
In the two-dimensional version of the algorithm, the

heuristic function ��r; u; n� also depends on n which is the
number of dimensions already in working memory. This
function results in the inverse of the distance to the next

dimension in case of arranging the first uppermost row. The
second condition is fulfilled if a dimension for the first or
last column is chosen. In this case, we consider the inverse
of the distance to the dimension located in the same column
one row above. In all other cases, we consider the average of
the inverse of the distances to its already known neighbors.

In Fig. 18, we demonstrate the advantage of the
similarity ordering using our stock exchange database
introduced in Section 5. The similarity measure used is
based on the translation- and scaling-invariant partial
similarity measure described in Section 6.1. In comparing
the sequential (cf. Fig. 18a) with the similarity arrangement
(cf. Fig. 18b), our new ordering allows the user to see
clusters, correlations, and functional dependencies more
easily. The segments on the right side of the circle, for
example, all seem to have a peak (light color) at the outside,
which corresponds to approximately the same period of
time. Seven dimensions on the upper left side seem to have
their peaks in a different period of time andÐbecause they
are placed next to each otherÐit is easy to compare them
and to find differences between them. More examples are
provided in [1].

7 GEOMETRY-RELATED DATA

There are a large number of applications where geometry-
related data arises. Examples include weather measure-
ments, such as temperature, rainfall, wind-speed, etc.,
measured at a large number of locations, use of connecting
nodes in telephone business, load of a large number of
internet nodes at different locations, air pollution of cities
with a certain number of inhabitants, etc. Visualizing this
type of information requires representing the data values
(e.g., air pollution) and their spatial location. A natural way
to visualize the data would be, for example, to represent the
data values as colored pixels on a screen position which
directly correlates to the spatial location of the data. Since
the spatial locations of the data are not uniformly
distributed in a rectangular data space, however, the
display will usually be sparsely populated in some regions,
while, in other regions of the display, a high degree of
overplotting occurs. Consider, for example, the air pollution
example from above. The cities with more than 10; 000
inhabitants cluster in few places (such as North America,
Europe, Asia, etc.), while large portions of the earth are only

KEIM: DESIGNING PIXEL-ORIENTED VISUALIZATION TECHNIQUES: THEORY AND APPLICATIONS 71

Fig. 18. Visualizations generated using the circle segments visualization

technique. (a) Sequential arrangement. (b) Similarity arrangement.

(Adapted from [1] ßIEEE.)

sparsely inhabited. In addition, if the data is presented on a
world map, the large portion of the screen which
corresponds to oceans is not used, while only a few data
values corresponding to European cities may be displayed.
This results in a loss of potentially important information.

A simple but intuitive idea to avoid this problem is to
present data values which cannot be presented at the
correct position on the screen at nearby unoccupied
positions. If the values are presented in an appropriate
way, the visualization naturally reflects the spatial location
of the data and the loss of information can be avoided. In
addition, as many pixels of the display as necessary are
used while still reflecting the spatial nature of the data. In
Fig. 19, we show a data set of lightning strikes in southern
Germany over a period of time. On the left, the data set is
presented without overlapping data points, whereas, on the
right, overlapping data points are placed on unoccupied
pixels close to their original position, thereby avoiding less
information.

7.1 The Problem of Visualizing Geometry-Related
Data

The problem of visualizing spatially referenced data can be
described as a mapping between the multiset of original
positions and the set of new positions. Let A be the data set
of original positions A � fa0; . . . ; aNÿ1g with ai � �axi ; ayi �,
where it is possible that ai � aj for an arbitrary i and j. Let
the data space (or, better, screen space) DS � ZZ2 be defined
as DS � f0; . . . ; xmax ÿ 1g � f0; . . . ; ymax ÿ 1g, where xmax
and ymax are the maximal extension of the screen.

Definition 7 (Problem of Visualizing Geometry-related

Data). The goal in visualizing geometry-related data is to
determine a solution set S � fs0; . . . ; sNÿ1g of new positions,
with si being the new position of ai, such that

i 6� j) si 6� sj 8i; j 2 f0; . . . ; N ÿ 1g
and the following criteria are optimized:

1. absolute position-preservation

XNÿ1

i�0

d�ai; si� ! min;

2. relative position-preservation

XNÿ1

i�0

XNÿ1

j�0;j6�i
d�si; sj� ÿ d�ai; aj� ! min;

3. relative distance-preservation

XNÿ1

i�0

XNÿ1

j�0;j6�i

d�si; sj�
d�ai; aj� ! min;

where d is an arbitrary distance metric in 2D such as
d�ai; aj� � jaxi ÿ axj j � jayi ÿ ayj j or the Euclidean metric

d�ai; aj� �
���
�axi ÿ axj �2 � �ayi ÿ ayj�2

q
:

The goal is that the resulting visualization should be as
similar as possible to the visualization of the original data.
The similarity may be defined by the absolute distance of
the data points to their original positions (cf. first condition)
or by the relative distance (cf. second condition) or relative
position (cf. third condition) between the data points. The
optimization goals make sure that as little as possible of the
spatial information is lost. Which of the three optimization
goals is most important and should be fulfilled first
depends on the application. The formal description of the
problem indicates that finding a mapping which fulfills the
above properties is a typical optimization problem. Most
typical optimization problems are NP-complete and we
assume that our mapping problem also belongs to the class
of NP-complete problems. A formal proof, however, has not
yet been found.

7.2 The Nearest-Neighbor, Curve, and Gridfit
Algorithms

In [36], we proposed three solutions to solve the problem
described in Definition 7. Let us briefly recall the three
algorithms: All three algorithms work in two steps. In
Step 1, all data points ai which have unique positions (i.e.,
ai 6� aj 8aj 2 Aj 6� i) are placed on the display. In the
second step, a new position which is as close as possible to
their original position is determined for the remaining data
points. More formally, the general idea of the algorithm can
be described as follows: The set of points S is the set of data
points with unique positions and the set of points T is a
temporary set to be placed in the second step.

Step 1:

. S0 � fa0g; T0 � ;

.

Si�1 � Si [fai�1g if �ai�1 6� s� 8s 2 Si
Si otherwise

�

.

Ti�1 � Ti if �ai�1 6� s� 8s 2 Si
Ti [fai�1g otherwise

�

72 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 6, NO. 1, JANUARY-MARCH 2000

Fig. 19. Lightening strike data. (a) With overlap. (b) Without overlap.

(Adapted from [36] ßIEEE.)

Step 2:

. S00 � SNÿ1 ; T
0
0 � TNÿ1

. T 0i�1 � T 0i ÿ fag for an arbitrary a 2 T 0i

. S0i�1 � S0i [fanewg where anew is the new position
corresonding to a which is determined differently by
the three algorithms.

7.2.1 Nearest-Neighbor Algorithm

In the case of the nearest-neighbor algorithm, the new
position for the data points which do not have a unique
position and have therefore not been placed in the first step
is determined by simply placing the data points on the
nearest unoccupied positions (cf. Fig. 20a). More formally,
the new position anew of a data point a is determined as

anew � s0 2 DS n Si j d�a; s0� � d�a; s� 8s 2 DS n Sif g:

An advantage is that the new position can usually be
determined locally and therefore, in general, the algorithm
works rather efficiently. For a very dense display, however,
the efficiency and effectiveness suffer from the fact that the
new position may be rather far from the original position.

7.2.2 Curve-based Algorithm

In the case of the curve-based algorithm, the new position
for the data points which do not have a unique position and
have therefore not been placed in the first step is
determined by computing the nearest unoccupied positions
on a given screen-filling curve and shifting all data points
between the overlapping data point and the unoccupied
position in that direction (cf. Fig. 20b). Screen-filling curves,
such as the Hilbert-curve [50], [26] or Z-curve [48], provide
a bijective mapping between a position on a one-dimen-
sional line and a two-dimensional position. The advantage
is that data points which are close in 1D are usually mapped
to nearby points in 2D and vice versa. The idea of the curve-
based algorithm is to shift the data points along the screen-
filling curve (1D) which in general also corresponds to
nearby positions in 2D.

7.2.3 The Gridfit Algorithm

The basic idea of the Gridfit algorithm is to hierarchically
partition the data space. In each step, the data set is
partitioned into four subsets containing the data points

which belong to four equally sized subregions. Since the
data points may not fit into the four equally sized
subregions, we have to determine a new extend of the four
subregions (without changing the four subsets of data
points) such that the data points in each subset can be
visualized in the corresponding subregion. For an efficient
implementation of the algorithm, a quadtree-like data
structure is used to manage the required information and
to support the recursive partitioning process. The partition-
ing process works as follows: Starting with the root of the
quadtree, in each step, the data space is partitioned into
four subregions. The partitioning is made such that the area
occupied by each ubregion (in pixels) is larger than the
number of pixels belonging to the corresponding subregion
(cf. Fig. 21). For the details of the three algorithms, the
reader is referred to [36].

7.3 Evaluation

All algorithms introduced in Section 7.2 have been
implemented as part of the VisualPoints system. The
system is implemented in C++ and is running under HP-UX
and LINUX. We used the VisualPoints system to evaluate
and compare the different algorithms. We evaluated not
only the efficiency, but also their mathematically defined
absolute and relative position- and distance-preservation
and their visual effectiveness.

7.3.1 Efficiency

The theoretical time and space complexities of the three
algorithm are all similar. In all three cases, the space
complexity is O�N� and the time complexity is between
O�N� in the best case and O�N2� in the worst case. An
experimental evaluation based on different realistic data
sets, however, clearly shows the advantage of the Gridfit
algorithm. Since the number of data points which on the
average would be positioned at the same pixel plays an
important role in all algorithms, we used data sets with a

KEIM: DESIGNING PIXEL-ORIENTED VISUALIZATION TECHNIQUES: THEORY AND APPLICATIONS 73

Fig. 20. Nearest-neighbor and curve-based algorithms. (a) NN-algo-

rithm. (b) Curve-based algorithm. (Adapted from [36] ßIEEE.)

Fig. 21. Partitioning of a node. (Adapted from [36] ßIEEE.)

Fig. 22. Comparison of the efficiency. (Adapted from [36] ßIEEE.)

different overlap-factor (OF). In Fig. 22, we provide the
performance curves for a varying overlap-factor. It is clear
that, for all algorithms, the time increases significantly with
an increasing overlap-factor, with the Gridfit algorithm
being the clear winner, closely followed by the Nearest-
Neighbor algorithm.

7.3.2 Effectiveness

More important than the efficiency, however, is the
effectiveness of the visualizations. The effectiveness can be
determined by visually comparing the generated visualiza-
tions, but it can also (at least partially) be determined
mathematically according to our optimizations goals.
Before presenting the visual comparison, we therefore
briefly present the measured effectiveness, i.e., the absolute
and relative position and distance preservation (cf. Defini-
tion 7) for an L1 distance function (d).

In Fig. 23, we present the absolute position measure of
the three algorithms depending on the overlap-factor. Fig. 23
clearly shows that the Gridfit algorithm provides a smaller
average deviation from the original position than the
nearest-neighbor and curve-based algorithms, especially
for higher overlap factors, which can also be confirmed by
the visual comparison. Fig. 24 presents the development of
the relative position and relative distance measure with
increasing overlap-factor. It measures how good the relative
position of the data points is preserved in the visualization
(a smaller value means a better relative position preserva-
tion). Here, the advantage of the Gridfit algorithm over the
nearest-neighbor and curve-based algorithms becomes even
more impressive. The improvement is up to 390 percent
over the nearest-neighbor and up to 870 percent over the
curve-based algorithm. Fig. 24b shows the relative
distance measure of the three algorithms for an overlap-
factor of about 10. In this case, all three algorithms
provide about the same performance and the value of the
Gridfit algorithm is between the nearest-neighbor and the
curve-based algorithms.

All formal effectiveness measures as defined by the
absolute and relative position and distance are of limited
value if they do not correspond to improvements in the
generated visualizations. We therefore performed a detailed
visual comparison of the three techniques which, in general,
confirms the measured effectiveness criteria.

Our first comparison uses a grayscale world data map
with simulated points distributed over the surface of dry

land. Fig. 25 shows the result of visualizing the data using
our nearest-neighbor, curve-based, and Gridfit algorithms
on two different resolutions. The nearest-neighbor algo-
rithm provides nice results, at least for the portion of data
which can be placed at its original position in the first step
of the algorithm. The contours of the continents are clearly
visible in their original size. All data points which cannot be
placed in the first step, however, do not show any structure
(cf. right portion of a Fig. 25a). In the case of the curve-based
algorithm, the continents are rather distorted and their
contours are barely visible. In the lower resolution picture
(cf. right portion of Fig. 25b), there seems to be no similarity
to the original image. This result corresponds to the result of
our theoretical effectiveness comparison,, which showed
that the curved-based algorithm is worse than the other two
approaches. The visualization generated by the Gridfit
algorithm also confirms the results of the theoretical
effectiveness comparison, namely that the Gridfit algorithm
provides significantly better results than the other two
approaches (cf. right portion of Fig. 25c). In contrast to the
nearest-neighbor algorithm, the Gridfit algorithm enlarges
and distorts the contours such that all points can be placed
close to their original position. As a result, the visualization
retains the spatial locality of the data points as much as
possible, which results not only in a better (absolute and
relative) position-preservation but also in a better visual
representation of the data.

To analyze the properties of three algorithms in more
detail, we designed a synthetic data set consisting of a
number of objects with different properties (cf. Fig. 26a).
Besides a few simple objects, such as circles, straight and
curved lines, we also include vertical and horizontal bars
and text, as well as rectangular and circular patterns. In the
visualizations generated by our three algorithms, some of
the properties of the algorithms get clearer. Again, the
curve-based algorithm provides the poorest results for all

74 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 6, NO. 1, JANUARY-MARCH 2000

Fig. 23. Absolute position measure. (Adapted from [36] ßIEEE.)

Fig. 24. Relative position and relative distance measure. (a) Relative

position measure. (b) Relative distance measure. (Adapted from [36]

ßIEEE.)

types of objects (cf. Fig. 26c). The nearest-neighbor algo-
rithm provides rather good results, especially for the text
(cf. Fig. 26b). The main problem of the algorithm, however,
are the rectangular and circular patterns, which show the
correct result in the center, but no structure for the
overlapping data points positioned in the second step of
the algorithm. Since patterns are very important in data
exploration, this turns out to be major drawbacks of the
nearest-neighbor algorithm. In contrast, the Gridfit algo-
rithm performs nicely for all types of objects (cf. Fig. 26d).
Note that the rectangular and circular patterns are enlarged,
which is a desired effect for preserving the spatial locality as
much as possible.

8 SUMMARY AND CONCLUSIONS

Pixel-oriented visualization techniques have been shown to
be useful for the exploration and analysis of large databases
to find interesting data clusters and their properties. So far,
most of the techniques seem to be ad hoc solutions without
any formal basis. In this paper, we show that underlying the
development and design of pixel-oriented techniques there
are a number of serious optimization problems which have
to be solved. We provide the formal problem definitions
and show how the optimizations of different criterions lead
to the different variants of pixel-oriented techniques.

APPENDIX

Proofs of NP-Completeness

For the proofs of the NP-completeness of the linear one- and
the two-dimensional ordering problem, we need to recall
the notion of ªpolynomial reductionº and the ªreduction
lemmaº from complexity theory.

Definition 8 (Polynomial Reduction). A problem P1 � ��1
can be polynomially reduced to a problem P2 � ��2
(notation P2 � P1) if there exists a transformation f :
��1 ! ��2 which can be determined in polynomial time
such that 8x 2 ��1 : x 2 P1 , f�x� 2 P2.

Lemma 4 (Reduction [22]).

P1 2 NP ^ P2NP-complete ^ P2 � P1) P1 NP-complete:

The principle idea of the reduction is to show that the
problem can be reduced to a known NP-complete problem.
A precondition is that the new problem P1 can be solved in
nondeterministic polynomial time. If we assume that we
have a solution of the problem P1 and show that, in this
case, we can use the solution to also solve the NP-complete
problem P2, then it implies that P1 is at least as complex as
P2 and, therefore, P1 also has to be NP-complete. Note that
the transformation of the problem and solution in the
reduction step have to be of polynomial time and space
complexity.

Lemma 2 (NP-Completeness of the Linear 1D Problem).

The linear variant of the one-dimensional ordering problem
according to Definition 5 is NP-complete.

Proof. For proving the NP-completeness of the problem, we
have to show that 1) the problem can be solved in
nondeterministic time, and 2) we have to find a related
NP-complete problem and a polynomial transformation
(reduction) between the original and the NP-complete
problem.

1. To show that the problem can be solved in
nondeterministic time, we have to define the
corresponding decision problem:

KEIM: DESIGNING PIXEL-ORIENTED VISUALIZATION TECHNIQUES: THEORY AND APPLICATIONS 75

Fig. 25. Comparison of the effectiveness. (a) Nearest-neighbor

algorithm. (b) Curve-based algorithm. (c) Gridfit algorithm. (Adapted

from [36] ßIEEE.)

Fig. 26. Visualization of synthetic test data using the three algorithms.

(a) Original data. (b) Nearest-neighbor algorithm. (c) Curve-based

algorithm. (d) Gridfit algorithm. (Adapted from [36] ßIEEE.)

Given an ordering f��0�; . . . ; ��kÿ 1�g and
some real number X. Decide whether

Xkÿ1

j�0

S A��i�; A���i�1�modk�
ÿ � � X:

This problem is obviously in NP (we can
nondeterministically guess a solution and then
calculate the sum in polynomial time). If we are
able to solve this problem, we can also solve the
original problem in nondeterministic polynomial
time since we can use a binary partitioning for the
X value range and iteratively apply the decision
problem to determine the correct X which
corresponds to the correct solution.

2. A related NP-complete problem is the TSP
problem. The reduction, however, is not straight-
forward. We have to show that the linear problem
is at least as complex as the TSP problem, i.e., if
we can solve the linear problem, then we also
have a solution of the TSP problem. Let us assume
that we have an algorithm for solving the linear
problem. For solving the TSP problem (for an
arbitrary set of dimensions A � fA0; . . . ; Akÿ1g
with an arbitrary similarity matrix S), we now
define a transformation

f�A;S� � � ~A; ~S�;
where ~A � A [~A0 and ~S is a �k� 1� � �k� 1�
matrix which is defined as

. ~S�Ai;Aj� � S�Ai;Aj� 8i; j � 0; . . . ; �kÿ 1�,

.

~S� ~A0; Ai� � ~S�Ai; ~A0� � S�A0; Ai�
8i � 0; . . . ; �kÿ 1�;

. ~S�A0; ~A0� � ~S� ~A0; A0� � LARGE, where

LARGE �
Xkÿ1

i�0

Xkÿ1

j�0

S�Ai;Aj� � 1:

Without loss of generality, we split A0 such that
A0 becomes the start dimension and the addi-
tional dimension ~A0 becomes the end dimension
of the linear solution (cf. Fig. 27a). The distance
(similarity) values of the new dimension ~A0 are
set to the same values as the distances for A0 and
the distance between A0 and ~A0 is set to a very

high value �LARGE�, which is larger than all
similarity values in the similarity matrix together.
By this choice, we ensure that the path between
A0 and ~A0 will not become part of the solution
and therefore, A0 and ~A0 will be the start and end
point. If we now use the linear algorithm to
determine a solution, then we also have a solution
of the TSP problem since, in the back transforma-
tion, we just have to ignore the ~A0 dimension and
connect A0 directly to the neighbor of ~A0. The
transformation between the linear problem and
the TSP problem, as well as the back transforma-
tion of the solution can be done in polynomial
time and space. tu

Lemma 3 (NP-Completeness of the 2D Ordering Problem).

The two-dimensional ordering problem, according to Defini-
tion 6, is NP-complete.

Proof. The structure of the proof is analogous to the proof of
Lemma 3. Again we have to show that 1) the problem
can be solved in nondeterministic time, and 2) we have
to find a related NP-complete problem and a polynomial
transformation (reduction) between the original and the
NP-complete problem.

1. Analogously to the proof of Lemma 3, we have to
define the corresponding decision problem and,
then, the rest works as shown in proof of
Lemma 3. The decision is:

G i v e n a t w o - d i m e n s i o n a l o r d e r i n g
f��0; 0�; . . . ; ��k1 ÿ 1; k2 ÿ 1�g and some real num-
ber X. Decide whether

Xk1ÿ2

i�0

Xk2ÿ1

j�0

S A��i;j�; A��i�1;j�
ÿ ��

Xk1ÿ1

i�0

Xk2ÿ2

j�0

S A��i;j�; A��i;j�1�
ÿ � � X:

The first portion of the formula corresponds to
the sum of the distances in the rows and the
second portion to the sum of the distances in the
columns of the two-dimensional ordering.

2. Again, we use the TSP problem as the related
NP-complete problem. In this case, the reduc-
tion, however, gets more complex. Again, let us
assume that we have an algorithm for solving
the two-dimensional ordering problem. Without
loss of generality, we assume that the two-
dimensional ordering consists of k1 rows and k2

columns and we assume k � 2 � �k1 � k2� ÿ 4.6

For solving the TSP problem (for an arbitrary
set of dimensions A � fA0; . . . ; Akÿ1g with an
arbitrary similarity matrix S), we now define a
transformation

76 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 6, NO. 1, JANUARY-MARCH 2000

6. This assumption is only necessary to technically simplify the proof
since otherwise we would have to introduce additional dimensions to fill
up the gap and we would have do define specific distances to ensure an
appropriate ordering of those dimensions.

Fig. 27. Ideas of the NP-completeness proofs. (a) Linear 1D arrange-

ment. (b) 2D arrangement.

f�A;S� � � ~A; ~S�;
where ~A � A [fAk; . . . ; Ak1�k2ÿ1g and ~S is a �k1 �
k2� � �k1 � k2� matrix which is defined as

.

~S�Ai;Aj� � S�Ai;Aj� � LARGE
8i; j � 0; . . . ; �kÿ 1�;

.

~S�Ai;Aj� � ~S�Aj;Ai� � 2 � LARGE
8i � 0; . . . ; �kÿ 1� 8j � k; . . . ; k1 � k2 ÿ 1;

. ~S�Ai;Aj� � 0 8i; j � k; . . . ; k1 � k2 ÿ 1.

The basic idea of the proof is to introduce �k1 ÿ
2� � �k2 ÿ 2� new dimensions, for which the dis-

tances (similarity values) are chosen such that

those dimensions will be positioned by the two-

dimensional ordering algorithm as inner nodes of

the ordering, while the dimensions of the original

problem will be positioned as outer nodes (cf.

Fig. 27b). This is achieved by giving the new

dimensions very small distances to all other new

dimensions while the distances of the outer

dimensions are increased by a high value

�LARGE� so that they do not interfere with the

inner dimensions. The distance between inner

and outer dimension is set to a very high value

�2 � LARGE� to prevent a jumping between the

inner and outer dimensions.
If the algorithm for the two-dimensional

ordering problem is now applied, we also obtain

a solution of the TSP problem since, in the back

transformation, we just have to ignore the

additional dimensions fAk; . . . ; Ak1�k2ÿ1g. Again,

the transformation between the two-dimensional

ordering and the TSP problem, as well as the

mapping between the solutions, can be done in

polynomial time and with polynomial space since

at most O�k1 � k2� � O�k2� dimensions are added

and since the summations can also be done in

polynomial time. Therefore, if we have a solution

for the two-dimensional ordering problem, we

are able to construct a solution of the TSP problem

in polynomial time and space. Thus, the two-

dimensional ordering problem must also be NP-

complete. tu

ACKNOWLEDGMENTS

The author would like to thank all the people who

contributed to the research presented in this paper,

especially J. Porada who implemented the first prototype

of the VisDB system, M. Ankerst who developed the

Recursive Pattern and Circle Segments techniques, and

R. Gansel who implemented the VisualPoints system.

REFERENCES

[1] M. Ankerst, S. Berchtold, and D.A. Keim, ªSimilarity Clustering of
Dimensions for an Enhanced Visualization of Multidimensional
Data,º Proc. Int'l Conf. Information Visualization '98, pp. 52-60, 1998.

[2] B. Alpern and L. Carter, ªHyperbox,º Proc. Visualization '91,
pp. 133-139, 1991.

[3] V. Anupam, S. Dar, T. Leibfried, and E. Petajan, ªDataSpace: 3-D
Visualization of Large Databases,º Proc. Int'l Symp. Information
Visualization, pp. 82-88, 1995.

[4] M. Ankerst, D.A. Keim, and H.-P. Kriegel, ªCircle Segments: A
Technique for Visually Exploring Large Multidimensional Data
Set,º Proc. Visualization '96, 1996.

[5] D.F. Andrews, ªPlots of High-Dimensional Data,º Biometrics,
vol. 29, pp. 125-136, 1972.

[6] M. Apperley and I.T. Spence, ªA Bifocal Display Technique for
Data Presentationº Proc. Eurographics, pp. 27-43, 1982.

[7] C. Ahlberg and B. Shneiderman, ªVisual Information Seeking:
Tight Coupling of Dynamic Query Filters with Starfield Displays,º
Proc. Human Factors in Computing Systems CHI '94 Conf., pp. 313-
317, 1994.

[8] D. Asimov, ªThe Grand Tour: A Tool For Viewing Multidimen-
sional Data,º SIAM J. Science and Statistical Computing, vol. 6,
pp. 128-143, 1985.

[9] C. Ahlberg and E. Wistrand, ªIVEE: An Information Visualization
and Exploration Environment,º Proc. Int'l Symp. Information
Visualization, pp. 66-73, 1995.

[10] C. Ahlberg, C. Williamson, and B. Shneiderman, ªDynamic
Queries for Information Exploration: An Implementation and
Evaluation,º Proc. ACM CHI Int'l Conf. Human Factors in
Computing, pp. 619-626, 1992.

[11] A. Buja, D.F. Swayne, and D. Cook, ªInteractive High-Dimen-
sional Data Visualization,º J. Computational and Graphical Statistics,
vol. 5, no. 1, pp. 78-99, 1996.

[12] J. Beddow, ªShape Coding of Multidimensional Data on a
Microcomputer Display,º Proc. Visualization '90, pp. 238-246, 1990.

[13] B. Bederson, ªPad++: Advances in Multiscale Interfaces,º Proc.
Human Factors in Computing Systems CHI '94 Conf., p. 315, 1994.

[14] G.D. Battista, P. Eades, R. Tamassia, and I. Tollis, Graph Drawin:
Algorithms for the Visualization of Graphs. Prentice Hall, 1999.

[15] R.A. Becker, S.G. Eick, and A.R. Wilks, ªVisualizing Network
Data,º IEEE Trans. Visualization and Computer Graphics, vol. 1, no. 1,
pp. 16-28, Mar. 1995.

[16] C. Beshers and S. Feiner, ªAutoVisual: Rule-Based Design of
Interactive Multivariate Visualizations,º IEEE Computer Graphics
and Applications, vol. 13, no. 4, pp. 41-49, 1993.

[17] A. Buja et al., ªInteractive Data Visualization Using Focusing and
Linking,º Proc. Visualization '91, pp. 156-163, 1991.

[18] W.S. Cleveland, Visualizing Data. Summit, N.J.: Hobart Press, 1993.
[19] M. Dorigo and L. M. Gambardella, ªAnt Colony System: A

Cooperative Learning Approach to the Traveling Salesman
Problem,º IEEE Trans. Evolutionary Computation, vol. 1, no. 1, 1997.

[20] S.G. Eick, ªData Visualization Sliders,º Proc. ACM UIST, pp. 119-
120, 1994.

[21] S. Eick and G.J. Wills, ªNavigating Large Networks with
Hierarchies,º Proc. Visualization '93, pp. 204-210, 1993.

[22] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. W.H. Freemann, 1979.

[23] G.W. Furnas and A. Buja, ªProsections Views: Dimensional
Inference through Sections and Projections,º J. Computational and
Graphical Statistics, vol. 3, no. 4, pp. 323-353, 1994.

[24] K. Fishkin and M.C. Stone, ªEnhanced Dynamic Queries via
Movable Filters,º Proc. Human Factors in Computing Systems CHI
'95 Conf., pp. 415-420, 1995.

[25] G. Furnas, ªGeneralized Fisheye Views,º Proc. Human Factors in
Computing Systems CHI '86 Conf., pp. 18-23, 1986.

[26] D. Hilbert, ªUÈ ber stetige Abbildung einer Linie auf ein FlaÈchen-
stuÈ ck,º Math. Annalen, vol. 38, pp. 459-460, 1891.

[27] G.T. Herman and H. Levkowitz, ªColor Scales for Image Data,º
Computer Graphics and Applications, pp. 72-80, 1992.

[28] A. Inselberg, ªThe Plane with Parallel Coordinates, Special Issue
on Computational Geometry,º The Visual Computer, vol. 1, pp. 69-
97, 1985.

[29] A. Inselberg and B. Dimsdale, ªParallel Coordinates: A Tool for
Visualizing Multi-Dimensional Geometry,º Proc. Visualization '90,
pp. 361-370, 1990.

[30] B. Johnson, ªVisualizing Hierarchical and Categorical Data,º PhD
thesis, Dept. of Computer Science, Univ. of Maryland, 1993.

KEIM: DESIGNING PIXEL-ORIENTED VISUALIZATION TECHNIQUES: THEORY AND APPLICATIONS 77

[31] D.A. Keim, ªVisual Support for Query Specification and Data
Mining,º Aachen, Germany: Shaker-Publishing Company, 1995.

[32] D.A. Keim, ªEnhancing the Visual Clustering of Query-Depen-
dent Database Visualization Techniques Using Screen-Filling
Curves,º Proc. Workshop Database Issues for Data Visualization, 1995.

[33] D.A. Keim, ªPixel-Oriented Visualization Techniques for Explor-
ing Very Large Databases,º J. Computational and Graphical Statistics,
vol. 5, no. 1, pp. 58-77, 1996.

[34] D.A. Keim, ªVisual Database Exploration,º tutorial, Proc. Int'l
Conf. Knowledge Discovery in Databases (KDD '97), 1997.

[35] D.A. Keim, ªVisual Data Mining,º tutorial, Proc. Conf. Very Large
Databases, 1997.

[36] D.A. Keim and A. Herrmann, ªThe Gridfit Algorithm: An Efficient
and Effective Algorithm to Visualizing Large Amounts of Spatial
Data,º Proc. IEEE Visualization Conf., pp. 181-188, 1998.

[37] D.A. Keim and H.-P. Kriegel, ªVisDB: Database Exploration Using
Multidimensional Visualization,º IEEE Computer Graphics &
Applications, pp. 40-49, Sept. 1994.

[38] D.A. Keim and H.-P. Kriegel, ªIssues in Visualizing Large
Databases,º Visual Database Systems, pp. 203-214, Chapman &
Hall Ltd., 1995.

[39] D.A. Keim, H.-P. Kriegel, and M. Ankerst, ªRecursive Pattern: A
Technique for Visualizing Very Large Amounts of Data,º Proc.
Visualization '95, pp. 279-286, 1995.

[40] D.A. Keim, H.-P. Kriegel, and T. Seidl, ªSupporting Data Mining
of Large Databases by Visual Feedback Queries,º Proc. 10th Int'l
Conf. Data Eng., pp. 302-313, 1994.

[41] D.A. Keim and H.-P. Kriegel, ªVisualization Techniques for
Mining Large Databases: A Comparison,º IEEE Trans. Knowledge
and Data Eng., vol. 8, no. 6, pp. 923-938, Dec. 1996.

[42] Y. Leung and M. Apperley, ªA Review and Taxonomy of
Distortion-Oriented Presentation Techniques,º Proc. Human Fac-
tors in Computing Systems CHI '94 Conf., pp. 126-160, 1994.

[43] H. Levkowitz, ªColor Icons: Merging Color and Texture Percep-
tion for Integrated Visualization of Multiple Parameters,º Proc.
Visualization '91, Oct. 1991.

[44] J. Lamping and R. Rao, ªLaying Out and Visualizing Large Trees
Using a Hyperbolic Space,º Proc. UIST, pp. 13-14, 1994.

[45] J. Lamping, R. Rao, and P. Pirolli, ªA Focus + Context Technique
Based on Hyperbolic Geometry for Visualizing Large Hierar-
chies,º Proc. Human Factors in Computing Systems CHI '95 Conf.,
pp. 401-408, 1995.

[46] J. LeBlanc, M.O. Ward, and N. Wittels, ªExploring N-Dimensional
Databases,º Proc. Visualization '90, pp. 230-239, 1990.

[47] T. Munzner and P. Burchard, ªVisualizing the Structure of the
World Wide Web in 3D Hyperbolic Space,º Proc. VRML '95 Symp.,
pp. 33-38, 1995.

[48] G.M. Morton, ªA Computer Oriented Geodetic Data Base and a
New Technique in File Sequencing,º IBM Ltd., Ottawa, Canada,
1966.

[49] J.D. Mackinlay, G.G. Robertson, and S.K. Card, ªThe Perspective
Wall: Detail and Context Smoothly Integrated,º Proc. Human
Factors in Computing Systems CHI '91 Conf., pp. 173-179, 1991.

[50] G. Peano, ªSur une courbe qui remplit toute une aire plaine,º
Math. Annalen, vol. 36, pp. 157-160, 1890.

[51] R.M. Pickett and G.G. Grinstein, ªIconographic Displays for
Visualizing Multidimensional Data,º Proc. IEEE Conf. Systems,
Man, and Cybernetics, pp. 514-519, 1988.

[52] R. Rao and S.K. Card, ªThe Table Lens: Merging Graphical and
Symbolic Representation in an Interactive Focus+Context Visua-
lization for Tabular Information,º Proc. Human Factors in Comput-
ing Systems CHI '94 Conf., pp. 318-322, 1994.

[53] G. Reinelt, ªThe Traveling SalesmanÐComputational Solutions
for TSP Applications,º Lecture Notes in Computer Science, vol. 840,
Springer-Verlag, 1994.

[54] G.G. Robertson, J.D. Mackinlay, and S.K. Card, ªCone Trees:
Animated 3D Visualizations of Hierarchical Information,º Proc.
Human Factors in Computing Systems CHI '91 Conf., pp. 189-194,
1991.

[55] M. Sarkar and M. Brown, ªGraphical Fisheye Views,º Comm.
ACM, vol. 37, no. 12, pp. 73-84, 1994.

[56] B. Shneiderman, ªTree Visualization with Treemaps: A 2D Space-
Filling Approach,º ACM Trans. Graphics, vol. 11, no. 1, pp. 92-99,
1992.

[57] R. Spence et al., ªVisualization for Functional Design,º Proc. Int'l
Symp. Information Visualization (InfoVis '95), pp. 4-10, 1995.

[58] E.R. Tufte, The Visual Display of Quantitative Information. Cheshire,
Conn.: Graphics Press, 1983.

[59] E.R. Tufte, Envisioning Information. Cheshire, Conn.: Graphics
Press, 1990.

[60] M.O. Ward, ªXmdvTool: Integrating Multiple Methods for
Visualizing Multivariate Data,º Proc. Visualization '94, pp. 326-
336, 1994.

[61] J.J. van Wijk and R.D. van Liere, ªHyperslice,º Proc. Visualization
'93, pp. 119-125, 1993.

[62] W. Wright, ªInformation Animation Applications in the Capital
Markets,º Proc. Int'l Symp. Information Visualization, pp. 19-25,
1995.

[63] A. Wilhelm, A.R. Unwin, and M. Theus, ªSoftware for Interactive
Statistical GraphicsÐA Review,º Proc. Int'l Softstat '95 Conf., 1995.

Daniel A. Keim received his diploma (equiva-
lent to an MS degree) in computer science from
the University of Dortmund in 1990 and his PhD
in computer science from the University of
Munich in 1994. Currently, he is an associate
professor at the Institute for Computer Science
of the Martin-Luther-University Halle, Germany.
He is working in the area of information
visualization and data mining, as well as
similarity search and indexing in multimedia

databases. In the field of information visualization, he developed several
novel techniques which use visualization technology for the purpose of
exploring large databases. He was the chief engineer in designing the
VisDB systemÐa visual database exploration system focusing on pixel-
oriented visualization techniques. He has published extensively on
information visualization and data mining, he has given tutorials on
related issues at several large conferences including SIGMOD, VLDB,
KDD, and AVI, and he was program cochair of the IEEE Information
Visualization Symposia 1999 and 2000.

78 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 6, NO. 1, JANUARY-MARCH 2000

