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Traceability is a key issue to ensure consistency among software artifacts of subsequent
phases of the development cycle. However, few works have so far addressed the theme
of tracing object oriented (OO) design into its implementation and evolving it. This paper
presents an approach to checking the compliance of OO design with respect to source
code and support its evolution. The process works on design artifacts expressed in the
OMT (Object Modeling Technique) notation and accepts C++ source code. It recovers an
“as is” design from the code, compares the recovered design with the actual design and
helps the user to deal with inconsistencies. The recovery process exploits the edit distance
computation and the maximum match algorithm to determine traceability links between
design and code. The output is a similarity measure associated to design-code class pairs,
which can be classified as matched and unmatched by means of a maximum likelihood
threshold. A graphic display of the design with different green levels associated to different
levels of match and red for the unmatched classes is provided as a support to update the
design and improve its traceability to the code.

1. Introduction

Software systems are developed following phased processes in which software
engineering complexities are tackled by means of subsequent refinement activities.
Requirement analysis, design and coding are phases that are present in almost any
software development process. A phased process however does not automatically help
to trace how requirements evolve into design and design into code.

Design documents are an important source of information, especially when the
system enters the maintenance phase [Baxter and Pidgeon 1997]. However, maintain-
ing consistency between software artifacts is a costly and tedious activity frequently
sacrificed during development and maintenance due to market pressure. This often
causes design to quickly become obsolete with respect to source code.

The verification of the design-code compliance is the basic step to produce an
updated version of the design. Even if reverse engineering tools can extract design rep-
resentations from the code, it is preferable to evolve existing design so that it matches
the code. In fact, designs produced by users are usually richer than those extracted
automatically, since they include context and high level semantic information. Further-
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more, in reverse engineered designs multiple semantics are candidate explanations for
the same piece of code (e.g., in C++ a pointer may be used to implement an association
as well as an aggregation). That’s why evolved designs are considered to be of higher
quality, provided that traceability with code is maintained.

The activity of checking the compliance and evolving the design can be greatly
assisted by automatic tools. Few approaches and systems to monitor the implementa-
tion faithfulness to its design have been proposed in the literature [Luckham et al. 1987;
Meyers et al. 1993; Murphy et al. 1995; Sefika et al. 1996]. In [Luckham et al. 1987],
a language for annotating Ada programs is defined. Meyers et al. [1993] designed
and implemented a language, CCEL, based on assertions to express constraints on
the structure and style of object oriented programs implemented in C++. Murphy et
al. [1995] developed an approach, called the software reflexion models, in which the
user provides a high-level model of the system and a map stating how entities in the
high-level model should be associated to those found in the source code. Sefika et
al. [1996] proposed a hybrid approach which, by integrating logic-based static and dy-
namic visualization, helps determining design-implementation congruence at various
levels of abstraction, from coding guidelines to architectural models such as design
patterns [Gamma et al. 1995] and connectors [Garlan and Shaw 1996], to design
principles like low coupling and high cohesion.

An in field study of traceability for a system at Ericsson is described in [Lindvall
and Sandahl 1996]. The reported experience suggests that by emphasizing traceability
as a quality factor from the very beginning, the documentation will be clearer and
more consistent. However, tracing items with no tool support or in models partially
inconsistent and underdocumented requires significant effort.

This paper presents an approach to checking the compliance and evolve OO
design with respect to source code, extending the preliminary work described in [An-
toniol et al. 1999]. The process operates on design artifacts expressed with the Object
Modeling Technique (OMT) [Rumbaugh et al. 1991] notation and accepts C++ source
code. Both design and code are represented using a custom OO design description
language, the Abstract Object Language (AOL). The process recovers an “as is” design
from the code in AOL, compares the recovered design with the actual AOL design
and helps the user to deal with inconsistencies by providing a similarity measure for
the matched classes and pointing out the unmatched ones. This activity was partially
funded by Sodalia SpA1 under the DEMOS 2 project, aiming at estimating software
size and complexity, and improving its quality.

Bunge’s ontology [Bunge 1977, 1979] has been taken as the base conceptual
framework to define the similarity criterion. An object is viewed as an individual which
possesses properties. Comparing individuals for similarity translates into checking the
similarity of the individuals’ properties. When instantiated in the context of OO
design to code traceability, individuals become classes, while properties are mapped
into class attributes (fields and methods). A similarity measure between the names of

1 Sodalia is one of the leading telecommunication software companies in Italy.
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the attributes is proposed, based on the edit distance between strings, and the maximum
match algorithm [Cormen et al. 1990] is applied to extract the best matching attribute
pairs. A summary similarity between the compared classes is then computed as the
average similarity measure of their attributes. The desired traceability links between
design and code are retrieved by iterating such computation over each pair of classes
and applying the maximum match algorithm at the class level. A further step can be
performed to separate matched classes from unmatched ones, by means of a maximum
likelihood classifier [Duda and Hart 1973].

Traceability of the relations can then be investigated for the matched classes.
Since the design represents an abstraction of the implementation, relations between
classes in the design are expected to be all present in the code, while additional
relations in the code can be regarded as implementation details. Thus the deletion of a
relation from the design is considered a traceability fault, and is signalled to the user,
while the addition of new relations in the code does not necessarily imply the need of
a design update.

Another traceability index is provided by the dictionary of words used to build
compound identifiers. The same names and acronyms as used in the design should be
found in the code, since they are the only means to ensure traceability. By segment-
ing compound identifiers into the composing words, a design/code dictionary can be
constructed which allows the update of both design and code to a standardized and
traceable set of accepted and recognized terms.

The proposed approach has been experimented on industrial design and code.
Support tools have been developed to extract the “as is” design from source code,
to match design into code and finally for result visualization. To communicate and
discuss our findings with project managers and programmers a pair-difference coloring
technique was adopted. A colored class diagram summarizes design-code traceability
relations by assigning different colors respectively to perfectly matched information,
information present in the design but absent in the code (unmatched items) and infor-
mation partially matched.

Context information in the design and automatically generated code can decrease
traceability. Classes from other components can be included for clarity in the design
of the current one, without being associated to developed code, while on the other
side classes generated, e.g., by Graphical User Interface (GUI) builders could be un-
documented in the design. Information in this category is tagged as unmatched by
the proposed approach, and the one related to the design is displayed in a different
color (red), so that it is not confused with that requiring a design update (light green).
Unmatched information in the design has to be retained if it helps understanding the
whole context, but it should be marked differently from the rest of the diagram, as
suggested by the resulting colored class diagram.

For all the analyzed components a summary with the average match level and the
number of unmatched classes will be given. Relations deleted from the design when
moving to the code will also be outlined. Furthermore, one case study component will
be investigated in more detail and its traceability links will be considered from the class
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level down to the individual fields and methods – thereby showing the multiplicity of
granularity of the proposed approach. Finally, traceability will be considered in terms
of the dictionary used to build compound identifiers in the design and in the code.

In section 2, a formal framework for design-code traceability, based on the
Bunge’s ontology is presented, followed by a detailed description of its instantiation
for design-code traceability check. The adoption of a maximum likelihood classifier is
introduced with the purpose of determining matched and unmatched class pairs. The
traceability of the relations is then considered, and an analysis of the dictionary used
in design and code is presented. In this section some issues related to handling context
information are also discussed, and finally a visualization technique to show the results
in an intuitive form is considered. Section 3 is devoted to an experimental validation
of the approach on an industrial system for which both design and code are available.
In section 4, our approach is compared with related work in design-code compliance
verification. Finally, in section 5 conclusions are drawn.

2. Evolving object-oriented design

Each software artifact along the software development cycle should be the “refine-
ment” of the artifacts of the previous phase. It should be consistent with the previous
artifacts and it should be possible to trace information along the phased development
process.

2.1. Design-code match

Bunge’s ontology has been a source of inspiration in the OO domain. Accord-
ing to this ontology objects can be viewed as substantial individuals which possess
properties. Chidamber and Kemerer [1994] proposed a representation of substantial
individuals, objects, as a finite collection of properties:

X =
〈
x,P (x)

〉
, (1)

where the object X, is identified by its unique identifier, x, and P (x) is its finite
collection of properties.

In general, two objects X and Y may possess different properties. Thus, a pre-
liminary step in the definition of a similarity measure between them is the introduction
of a map m between a subset of the properties of X and a subset of the properties of
Y , to be considered as matched properties. Then the remaining properties from P (x)
and P (y) are unmatched properties, respectively, of X and Y :

m :P (x)→ P (y), (2)

Unmatched(X) = P (x)− Dom(m), (3)

Unmatched(Y ) = P (y)− Ran(m), (4)
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where m is an injective function from P (x) to P (y), Dom is the domain and Ran the
range. Unmatched properties of X are those not in the domain of m, while unmatched
properties of Y are those not in the range of m.

Given a measure of similarity, s(p, q), between the matched properties p ∈ P (x)
and q ∈ P (y) of two different objects X and Y , an overall similarity measure between
the objects can be obtained by applying a suitable average operator as, for example,
the arithmetic average:

s(X,Y ) =
1

|Dom(m)|
∑

p∈Dom(m)

s
(
p,m(p)

)
. (5)

An overall picture of the similarity between X and Y is therefore given by the sets
of unmatched properties (Unmatched(X), Unmatched(Y )) and by the average similarity
measure between matched properties (s(X,Y )). A more detailed information can be
obtained by the individual similarity measures for the matched pairs of properties
(s(p, q), p ∈ Dom(m), q = m(p)).

The main entities present in an OO design, which must be reflected and imple-
mented in the corresponding code, are classes, objects and relations. Our approach
works on designs represented with the OMT notation. When tracing an OO design
into C++ code, among the three models used in OMT to represent an OO software
system (class diagram, functional model, dynamic model), we focused on the class
diagram. The class diagram is usually the first to be developed, common to many
other OO methodologies and notations (e.g., Booch and Unified Modeling Language)
and it is the only one that describes the system using specifically OO concepts.

When instantiating the above notion of similarity between objects to trace OO
design into code, classes have to be considered as the basic entities, whose properties
are the class attributes (both fields and methods). Given a pair of classes for which
a similarity measure has to be determined, the similarities of the contained attributes
(properties) have to be computed first. For such a purpose we propose to consider
the names of the attributes, prefixed with class scope, as strings, and to compute the
complemented edit distance [Cormen et al. 1990] between such strings:

s(ad, ac) =
1− d(ad, ac)
|ad|+ |ac|

, (6)

where ad and ac are the qualified names of an attribute from the design and from
the code, respectively, while d is the edit distance. Since the upper bound for the
edit distance is the sum of the lengths of the strings (|ad|+ |ac|), the above similarity
measure is between 0 and 1, being 0 when the two strings ad and ac have no character
in common, and 1 when they coincide. After computing the similarity between each
pair of attributes, the match function can be inferred by applying the maximum match
algorithm [Cormen et al. 1990] to the bipartite graph in which nodes are, respectively,
attributes from the design and from the code, connected by edges that are weighted
with the similarity measures. The edges computed by the algorithm as those giving the
maximum match define the desired match function. A further outcome of this algorithm
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is the set of unmatched attributes in the design and in the code. Then an average
similarity measure can be computed for the two classes, as the arithmetic average of
the similarity measures in the edges selected by the maximum match algorithm.

By repeating the above procedure for each pair of classes it is possible to de-
termine their respective average similarity measure. To determine the correspondence
between the design and the code it is possible to exploit the maximum match algorithm
again. In this case the nodes in the bipartite graph are, respectively, classes from the
design and from the code, while edges are weighted with the average similarity mea-
sures. The edges extracted by the algorithm represent the traceability links between
the design and the code. Each link is weighted with a similarity measure. In addition,
an initial set of unmatched classes is determined as those having no traceability link
attached.

2.2. Classification of matched and unmatched class pairs

The presence of a traceability link between a class in the design and a class in
the code is not sufficient to state that a match occurs. In fact, the similarity measure
associated to the link may be very low, and the edge in the bipartite graph could have
been selected by the maximum match algorithm only as an effect of maximizing the
total match measure.

Therefore, the links connecting matched classes from design and code have to
be classified to distinguish truly matched classes from unmatched ones. The use of
a maximum likelihood classifier [Duda and Hart 1973] is thus proposed, giving a
threshold which separates low similarity class pairs, to be considered unmatched, from
high similarity matched classes.

When a similarity threshold is adopted, two kinds of errors can occur. The first
error is the classification of truly matched classes as unmatched. The parameter which
accounts for this error is the recall, computed as the ratio of correctly classified class
pairs over the total number of truly matched class pairs. If recall is 1 no matched
class is missed by the classifier. The second error is the classification of an unmatched
class pair as matched. The parameter accounting for it is the precision, computed as
the ratio of correctly classified class pairs over the total number of classes classified
as matched. If precision is 1 no unmatched class is classified as matched.

The maximum likelihood classifier is the one which minimizes the sum of the
two errors. While each error can be individually minimized in a trivial way (recall
tends to 1 as the threshold is arbitrarily decreased, while precision tends to 1 when the
threshold increases), the maximum likelihood classifier gives the threshold for which
the likelihood of both errors is minimum.

The computation of the maximum likelihood threshold requires that a set of class
pairs is correctly labelled as matched or unmatched. For each of the two categories
the shape of the probability density has to be estimated from the frequency, and the
intersection of the two curves gives the threshold. Probability densities can be es-
timated by assuming a Gaussian distribution and determining mean and variance, or
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more generally by using raw frequency data or smoothed/fitted data as a substitute of
the true densities.

The accuracy of the classifier is then evaluated on a test set, different from the
one used to compute the threshold. In cases in which few examples are available, the
evaluation can be conducted with a cross validation technique. Each component in
turn is considered as a test case, while the remaining components are used to determine
the threshold. A repetition of the test procedure is thus possible by changing the test
component. Average performance and robustness can then be assessed on a wider base
than a single test case.

2.3. Relations traceability

In the sections above, traceability has been considered at the level of the basic
design entities – classes and attributes. The concept can be expanded further by
requiring that traceability holds also at the level of the relationships among classes.
In particular, if we consider a class in the design and the corresponding class in the
code, the relations of generalization, association and aggregation present in the design
should be reflected in the code. Since the code is the implementation of the design, a
relation appearing in the code with no counterpart in the design can be considered a
detail that is ignored when abstracted to the design level. On the contrary, all design
relations are expected to be found in the code.

The traceability check procedure for the relations uses the following strategy.
For each relation in the design, if the two connected classes are matched by two
corresponding classes in the code, a relation of the same type is looked for between
the two matched classes in the code. Relations between class pairs unmatched in the
code are not considered.

2.4. Dictionary traceability

If implicit traceability is adopted when the design is refined into the code, names
play a very important role. In fact, since no explicit traceability link is built, the only
means to map a design item into a code item is by analyzing its name. It is therefore
crucial that the designer and the programmer share a common dictionary of words and
abbreviations.

Dictionary traceability from design to code is achieved when the dictionary used
by the designer is the same as used by the programmer. Extensions in the code are
allowed, since new words may be required by the implementative details, but replace-
ments with synonyms or different abbreviations are indicators of poor traceability.
Furthermore the absence in the code dictionary of a design term may indicate the loss
of some concept or the degradation of the identifier self-documentation ability.

The first step to check dictionary traceability consists in the extraction of lexica.
To this aim, a module able to semi-automatically segment identifiers against a given
dictionary was developed. The procedure runs as follows: the dictionary is initially
empty, and identifiers are read from a design/code component. Whenever the case



42 G. Antoniol et al. / Design-code traceability for OO systems

occurs that segmentation of an identifier cannot be completely achieved with the given
dictionary, the program asks the operator for help. By visually inspecting the (partial)
results of segmentation, the operator tries to figure out which strings need to be included
in the dictionary in order to complete the segmentation. Such strings are then added
to the dictionary, and the process is reiterated until all the identifiers are completely
segmented. The result of the procedure is a collection of words necessary and sufficient
to segment all the identifiers contained in the input component, i.e., the (design or code)
component dictionary.

The second step consists in the manual labeling, according to their type, of all
the words contained in each component dictionary. To this end, 9 different types of
words have been preliminarly identified, distinguishing, for example, acronyms from
English forms, from words contractions, and so on. In section 3.6, the possibility to
trace the dictionaries extracted from the design into those extracted from the code will
be discussed for the components in the test suite.

2.5. Handling context information

Context information is often included in the class diagram, while extra informa-
tion can be in the code due to automatic generation. When tracing design into code
such information is classified as unmatched. On the side of the design, the typical
context information is:

• Classes from other user components, necessary to better understand the context of
the current component.

• Classes from libraries, included to represent subclassing of, or associations with,
current component classes.

• Environment components interacting with the user ones.

Classes in the code but not in the design have typically the following origins:

• COTS: the use of Components Off The Shelf may introduce classes in source code
which are not modeled in design.

• Automatically Generated Code: produced by code generation environments.

• Middleware: middleware software layers, for example CORBA, implementing dis-
tributed computing, introduce new classes in the code as a result of the process of
stub generation.

• UI components: components implementing User Interfaces (UI) are likely to present
in combination many of the previous features. In fact, often they are generated
automatically through GUI builders and usually make heavy use of libraries.

• Test code: drivers or stubs used to test the component in isolation.

The proposed approach to design-code traceability allows the identification of un-
matched classes, as those for which no traceability link is built by the maximum match
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algorithm, or those which are classified as unmatched by the maximum likelihood clas-
sifier. Unmatched classes in the design can be retained for clarity, even if a good prac-
tice would suggest to mark them and make them recognizable as context information.

2.6. Difference visualization

To highlight commonalities and differences, pair-difference coloring, a technique
which employs different colors to contrast pairs of versions of the same information,
was adopted. This technique has been previously used to represent changes in source
code between two different versions of a software product [Holt and Pak 1996]. Com-
mon and different parts of the two versions are assigned different colors. Colors have
also been used in software visualization, to associate time information distinguishing
recent from older changes in source code [Ball and Eick 1996].

Evolution of the design of a software component can be supported by adopting
such coloring techniques. We propose to modify the background color of the classes
in the design so that those unmatched by the code are red, while those with a perfect
match (similarity equal to 1) are green. Intermediate colors from green to yellow
can be used for intermediate similarity levels. The programmer charged to update
the design to improve its traceability with the code can prioritize the interventions.
Classes with colors close to the green require few modifications in the names of the
attributes, while yellow classes may require deeper investigations to understand why
the best matched attributes in the code are so different. Red classes are not matched
at all, thus the question is if they are context information to be preserved or if they
have to be removed from the design.

In addition the programmer can go into a deeper detail and analyze the match
between attributes (fields and methods) for a class of interest in the design. The
traceability of the relations is also given, as the list of inter-class relations that are
specified in the design but are not implemented in the code. This information is
provided textually.

At present, a prototype of the difference visualization technique is implemented
on top of OOD (Object-Oriented Designer)2, a public domain design tool. The output
of the tool to the printer is filtered by a program which uses the match levels determined
by traceability analysis to add colors to the classes in the design. An example of the
resulting plot will be given in the next section.

3. Experimental results

The whole design to code traceability check process is represented in figure 1. It
consists of the following steps:

2 OOD was developed by Taegyun Kim, at Pusan University of Foreign Studies, Pusan, Korea. It supports
the construction of object diagrams defined in OMT.
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Figure 1. Design to code matching process.

1. AOL Representation Extraction: the AOL textual representation can be recov-
ered from both the design and the code through respectively a Code2AOL and a
CASE2AOL translator.

2. AOL Representation Parsing: an AOL Parser produces the AST (Abstract Syn-
tax Tree) which subsequent phases rely on.

3. Match between design and code representations: a Matchermodule implements
the traceability check; it includes a function to compute the edit distance between
attribute names, an implementation of the maximum matching algorithm and a
maximum likelihood classifier.

4. Result Visualization: a Pair Difference Coloring module graphically
shows the results of matching, highlighting similarities and differences between
classes in the design and in the code.

The programmer is then in charge of the final step, in which the design is modified
to solve all outlined differences from the code. This phase cannot be completely
automated since the reasons for the major differences have to be fully understood by
the designer, in order to perform a meaningful update of the design.

Additional information can be obtained by the designer, by querying the trace-
ability links, and the associated measures, for the attributes of individual classes, by
evaluating the traceability of the relations between classes, and finally by constructing
the dictionary used for the names which compose the identifiers in the design and in
the code.

3.1. AOL representation extraction

AOL has been designed to capture OO concepts in a formalism independent
of programming languages and tools. AOL is a general-purpose design description
language, capable of expressing concepts available at the design stage of OO software
development.

This language is based on the Unified Modeling Language (UML) [Rational
Software Corporation 1997], a notation that is becoming the standard in object oriented
design. UML is a visual description language with some limited textual specifications.
Hence we designed from scratch many parts of the language, while remaining adherent
to UML where textual specifications were available. At present, AOL covers only the
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UML part related to class diagrams. Since, for class diagrams, the UML and OMT
notations are almost identical, AOL is compatible with OMT designs.

The language resembles other OO design/interface specification languages such
as IDL [Lamb 1987; OMG 1991] and ODL [Lea and Shank 1994]. However, AOL
was thought of as a light C++ design representation language, thus it does not have the
expressive power of ODL or IDL, but at the same time it allows a simple representation
of all the class diagram concepts. Aggregations and associations are widely used in
C++ programs and designs: AOL explicitly represents them while the former languages
do not. As a result, a limited effort is required to develop a design or C++ code to
AOL translator.

The AOL representation language ensures independence from any specific pro-
gramming or proprietary design representation language. Future versions of our
tool will incorporate the CDIF (CASE Data Interchange Format) standard, the
common intermediate representation which has been recently developed by CASE
tool vendors. More details on AOL can be found in [Antoniol et al. 1998;
Fiutem and Antoniol 1998].

A CASE2AOL Translator module has been implemented for the StP/OMT
[Interactive Development Environments 1996] tool, to obtain an AOL specification of
the internal object models from the repository, while the Code2AOL Translator
works on C++ code.

Extracting information about class relationships from code is far more difficult
than from design: results might have some degree of imprecision. In fact, given
two classes and a relation between them, there are intrinsic ambiguities, due to the
choice left to programmers implementing the OO design, whether to consider such
relation an association or an aggregation, unidirectional or bidirectional. Pointers, ref-
erences, templates (e.g., list<tree>), arrays (e.g., Heap a[MAX]) can represent
both associations and aggregations. A discussion on the semantics of the architectural
information extracted from the code can be found in [Woods et al. 1999]. In the
present work, an aggregation is recognized from the code if and only if an instance of
an object is stored as a data member of another object or a template or object array
data member is declared, even if a pointer could be used to create an object chunk.
All the remaining cases, i.e., object pointers and references both as data members and
formal parameters of methods, give origin to associations.

3.2. Test suite

To assess the approach in an industrial environment an experiment of design-code
compliance check was conducted on the design and the code of industrial software
for telecommunications, provided by Sodalia SpA under the DEMOS 2 project. 29
components (about 308 KLOC, thousand Lines Of Code) were analyzed, for which
both OO design models (stored as object models in the StP/OMT repository) and the
corresponding code were available. All components were developed using the C++
language.
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Table 1
Classes and attributes in the design and in the code for each component. LOC are given in the last

column under the Code heading.

Design Code

Comp. Classes Attr. Classes Attr. LOC

C1 38 280 53 1229 27398
C2 17 374 16 416 19863
C3 13 134 17 216 6190
C4 113 438 103 1227 42781
C5 7 82 26 188 15031
C6 9 0 5 101 3428
C7 29 139 21 496 21335
C8 35 109 44 957 21796
C9 29 329 39 644 11639
C10 24 165 28 244 15319
C11 18 260 18 249 14297
C12 12 159 11 198 16847
C13 1 19 2 50 2619
C14 3 15 2 13 1081
C15 12 0 7 174 11028
C16 17 49 8 105 6116
C17 6 29 6 64 438
C18 12 346 15 335 20781
C19 7 143 11 159 9913
C20 9 131 8 233 9412
C21 2 40 5 58 2561
C22 9 25 4 26 2532
C23 14 33 6 52 2514
C24 16 219 16 229 9680
C25 3 28 3 39 1422
C26 9 57 6 55 3059
C27 19 174 13 118 4922
C28 7 54 6 51 2858
C29 7 60 5 64 1447

Table 1 gives the number of classes and attributes in each analyzed component, as
resulting from the design and from the code. LOC figures are shown in the last column
under the Code heading. As one would expect, the number of classes and attributes
extracted from the code is often substantially higher than in the design, thus indicating
that the abstraction represented in the design typically ignores implementative details,
like support classes and attributes which are introduced in the coding phase [Lorenz
and Kidd 1994]. In a few cases the opposite is true (e.g., C2, C4, C7), and the higher
number of classes in the design can be explained by the presence of context information
inserted to help the programmer in understanding the whole operative setting of the
classes under development.
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Table 2
Deleted classes and average similarity measures for the design, as result-

ing from the maximum match algorithm.

Comp. Del. Avg sim. Comp. Del. Avg sim.

C1 0 0.829 C16 9 0.909
C2 1 0.944 C17 0 0.856
C3 0 0.992 C18 0 0.947
C4 10 0.636 C19 0 0.983
C5 0 0.986 C20 1 0.905
C6 4 0.963 C21 0 0.988
C7 8 0.748 C22 5 0.815
C8 0 0.698 C23 8 0.871
C9 0 0.884 C24 0 0.808
C10 0 0.968 C25 0 0.996
C11 0 1 C26 3 0.877
C12 1 0.907 C27 6 0.948
C13 0 0.983 C28 1 0.874
C14 1 0.628 C29 2 0.994
C15 5 0.890

Figure 2. Finding the classification threshold. (a) The misclassification error E(t), with component C1
excluded, is plotted as a function of the classification threshold, t. (b) Quadratic fitting of E(t) in the

neighborhood of tmin.

3.3. Average match figures

Table 2 shows the results of the code traceability check, before applying the
maximum likelihood classifier. The number of unmatched (deleted) classes in this
table only accounts for the classes in the design for which the maximum match algo-
rithm does not produce a traceability link. The application of the maximum likelihood
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classifier may increase such a number and will be discussed in the following. The
average similarity measure, i.e., the arithmetic average of the similarities in the recov-
ered traceability links, is given for each component. This measure is also expected to
increase after the application of the maximum likelihood classifier.

Average similarity is higher than 0.8, with the exception of components C4, C7,
C8 and C14, while the maximum number of classes deleted from the design is 10. The
low similarity (0.628) of component C14 was further investigated. The design of this
component contains 3 classes. One of them is context information that is deleted. The
remaining two classes have, respectively, a perfect match (similarity 1) and a very poor
match (similarity 0.257) with code. A close inspection into the latter class reveals that
the low similarity level is associated to a class to be considered actually unmatched,
i.e., introduced to provide context information but having no counterpart in the code.

The maximum likelihood classifier was then applied to obtain a better identi-
fication of matched and unmatched classes. To evaluate its performance the cross
validation technique was used. One component is taken out from the database, and a
value, tmin, for the classification threshold (t) is estimated on the remaining 28 com-
ponents. The process is then iterated over all the components of the database, and at
each iteration the accuracy of the classifier is assessed by counting the misclassification
errors made on the excluded component.

As shown by the plot in figure 2(a), the large-scale behaviour of the error E(t) is
pretty smooth; yet, its “true” point of minimum (that is, abstracted from the sampling
noise) can be localized only approximately. This may suggest that a more robust
estimate of the classification threshold could be obtained by locally approximating
E(t) with a (low-degree) polynomial, and by setting the threshold to a value, tfit,
corresponding to the point of minimum of such a polynomial. In figure 2(b), a second
degree fit of E(t) is shown.

Results collected in table 3 show how the estimate of the classification threshold
via polynomial fit does not improve the overall accuracy of the classifier; yet, it
typically gives a more balanced occurrence of false positives and false negatives (see,
for example, component C8), resulting in a higher robustness.

The average threshold computed by the maximum likelihood classifier using raw
data (table 3, second column) is 0.74. This value is extremely stable with respect to
the choice of the components used for its computation (the standard deviation is 0.03),
and its value is not critical in the error minimization process (see figure 2). Therefore
it can be used as a reference value for new components designed and developed in the
considered industrial environment.

If such a value is used to classify the matched class pairs resulting from the
application of the maximum match algorithm (see table 2), the number of classes
deleted from the design and the average similarity measure become those in table 4.

The average similarity is substantially higher, with a minimum of 0.839, and
above 0.9 with the exception of two components (C4 and C7). A perfect match is
achieved for 3 components (C11, C14, C15), of which only one was already evident
in table 2. This result was obtained by considering class pairs below the threshold as
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Table 3
Columns 2–4 report results on raw data; columns 5–7 those obtained with the polynomial fit.

Raw data Polynomial fit

Component tmin Precision Recall tfit Precision Recall

C1 0.764 1.0 0.926 0.738 0.954 0.971
C2 0.764 1.0 1.0 0.715 0.95 0.976
C3 0.764 1.0 1.0 0.706 0.95 0.976
C4 0.764 0.912 0.756 0.74 0.97 0.992
C5 0.765 1.0 1.0 0.717 0.951 0.977
C6 0.763 1.0 1.0 0.714 0.951 0.977
C7 0.697 0.857 0.923 0.717 0.957 0.979
C8 0.695 0.588 1.0 0.701 0.973 0.983
C9 0.765 1.0 1.0 0.714 0.947 0.975
C10 0.763 1.0 1.0 0.694 0.949 0.982
C11 0.687 1.0 1.0 0.723 0.955 0.972
C12 0.686 1.0 1.0 0.713 0.951 0.976
C13 0.764 1.0 1.0 0.714 0.952 0.977
C14 0.764 1.0 1.0 0.728 0.958 0.97
C15 0.764 1.0 1.0 0.707 0.951 0.977
C16 0.764 1.0 1.0 0.721 0.957 0.973
C17 0.695 1.0 1.0 0.705 0.951 0.977
C18 0.747 0.917 1.0 0.717 0.953 0.976
C19 0.764 1.0 1.0 0.688 0.948 0.983
C20 0.763 1.0 1.0 0.71 0.951 0.977
C21 0.694 1.0 1.0 0.726 0.958 0.974
C22 0.764 1.0 1.0 0.698 0.952 0.983
C23 0.764 1.0 1.0 0.696 0.952 0.983
C24 0.763 1.0 1.0 0.7 0.951 0.983
C25 0.694 1.0 1.0 0.711 0.952 0.977
C26 0.763 1.0 1.0 0.724 0.957 0.973
C27 0.764 1.0 1.0 0.732 0.956 0.969
C28 0.763 1.0 1.0 0.733 0.957 0.97
C29 0.764 1.0 1.0 0.709 0.951 0.977

unmatched. Consequently, the number of classes deleted from the design increases,
but in several cases a unitary increase suffices to improve the design-code match (e.g.,
C2, C9, C10, C14).

A final revision of the traceability links is anyhow required from the designer,
since the maximum likelihood classifier may in some infrequent cases be wrong, as
shown by the values of precision and recall in table 3.

3.4. Design-code match of the relations

Starting from the matching between the design and code classes obtained with
the maximum match algorithm, the subset of the truly matched classes is considered.
For each pair of matched classes, the relations of generalization, association and ag-
gregation in the design have been searched for in the code. For each component and
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Table 4
Deleted classes and average similarity measures for the design, as

resulting from the maximum likelihood classifier.

Comp. Del. Avg sim. Comp. Del. Avg sim.

C1 11 0.956 C16 10 0.982
C2 2 0.984 C17 1 0.966
C3 0 0.992 C18 0 0.947
C4 74 0.839 C19 0 0.983
C5 0 0.986 C20 2 0.996
C6 4 0.963 C21 0 0.988
C7 15 0.856 C22 6 0.990
C8 18 0.909 C23 9 0.988
C9 1 0.900 C24 5 0.984
C10 1 0.995 C25 0 0.996
C11 0 1 C26 4 0.999
C12 3 0.996 C27 7 0.999
C13 0 0.983 C28 2 0.999
C14 2 1 C29 2 0.994
C15 6 1

Table 5
Number of the generalization, association, aggregation relations of the design
classes found between the corresponding code classes over the number of

relations present in the design.

Comp. Gen. Ass. Agg. Comp. Gen. Ass. Agg.

C1 1/1 1/4 3/3 C16 0/0 0/7 0/0
C2 9/9 0/7 1/1 C17 2/2 0/2 0/1
C3 8/8 0/3 1/1 C18 9/9 0/5 0/0
C4 7/11 1/13 0/11 C19 5/5 0/5 0/0
C5 5/5 1/1 0/0 C20 5/5 0/1 0/0
C6 0/0 3/4 0/0 C21 0/0 0/0 0/0
C7 0/0 0/12 5/5 C22 0/0 0/1 0/1
C8 0/0 0/7 1/4 C23 0/0 0/2 0/3
C9 20/20 4/5 1/2 C24 2/2 2/2 1/7
C10 14/14 13/24 0/0 C25 1/1 0/1 0/0
C11 12/12 0/1 2/5 C26 2/2 0/2 0/0
C12 5/5 0/1 0/2 C27 9/9 0/1 1/1
C13 0/0 0/0 0/0 C28 2/2 0/2 0/0
C14 0/0 0/0 0/0 C29 0/0 0/1 2/3
C15 3/3 0/0 0/3

type of relation, the number of matching relations found in the corresponding code
classes over the total number of relations between matched classes in the design are
shown in table 5.

The traceability of the generalization relation is nearly total. Only in the C4
component there are 4 generalizations that do not appear in the code. Less traceable
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are the association and aggregation relations (although the latter are better). The poor
traceability of associations and aggregations has a twofold explanation. On one side
the meaning of such relations, as intended by the designer, is loosely coupled with its
implementation, being mainly associated to a vague concept of collaboration between
design entities. On the other side, some relations are missing in the code due to the
limitations of the reverse engineering tool, which is not always able to recognize them
in complex constructs and data structures, and therefore does not retrieve some of
the actually implemented relations. Generalization is the simplest relation to reverse
engineer, and the ones missing in the code correspond to an incorrect representation of
the underlying class hierarchy in the design. Association is the most difficult relation
to recover, since it may be implemented by using key-identifiers, typically integers
or strings, not directly related to the type of the associated objects. Aggregations
are usually simpler to extract than associations because they are implemented through
more standard programming constructs (e.g., arrays).

Component C4 is responsible for the graphical user interface, and consequently
it mixes lots of automatically generated code, library classes and user code. Its trace-
ability level is the lowest (0.839), with the maximum number of deleted classes (74),
even after applying the maximum likelihood classifier. The traceability of its relations
is again the lowest, with 4 generalizations and almost all associations and aggrega-
tions missing. The difficulties in separating relevant information from automatically
generated code and library classes suggest that results on this component should be
carefully interpreted. The true traceability level of this component would be expected
to increase if the designers and developers of this component were involved to identify
and compare the relevant portion of the design and the actually implemented code.

Summarizing, 121/125 (96.8%) generalizations, 25/114 (21.9%) associations and
18/53 (33.9%) aggregations can be automatically traced from the design to the code.
If component C4 is excluded, of the 114 generalizations, 101 associations, and 42 ag-
gregations present in the design, respectively 114 (100%), 24 (23.7%), and 18 (42.8%)
can be found in the code.

3.5. Detailed analysis of an example component

Average match figures discussed in the previous sections do not account for
the finer grain information from which they have been computed. In fact, for each
component traceability links between classes are available; moreover, for each pair
of matched classes, attributes can be considered, and the overall similarity measure
obtained for the classes can be split into matches between attributes from the design
and from the code, each with an associated similarity measure. Programmers can
use such a fine grain information to update designs making them consistent with
the implementation. On the basis of the similarity values of the matched classes and
attributes, they can decide to update names, and to add or remove classes and attributes.

To give a deeper insight into the process of evolving a design to improve its code
traceability, component C16 was considered in more detail. Its average traceability
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Figure 3. Pair difference diagram for component C16. Green classes are the three at the top (grey), green
to yellow ones are in the middle (light grey), while some of the red classes are shown at the bottom

(dark grey). Attributes have been omitted for clarity.

index is 0.982 with 10 unmatched classes, as resulting from the maximum likelihood
classifier, which increases the number of deleted classes from 9 to 10 due to a very low
match (0.397) between two classes. Manual inspection confirms that such additional
deletion is correct. Figure 3 shows the graphical result of code traceability analysis
for C16. Green boxes, used to represent a perfect match of classes in the design and
in the code, are shown at the top (grey). Light-green to yellow is for the intermediate
similarity levels, and accounts for the four classes in the middle (light grey, similarity
levels 0.957, 0.985, 0.991 and 0.940). Red is used for the boxes at the bottom,
associated to some of the unmatched classes (dark grey). One of them is an outcome
of the maximum likelihood classification (similarity 0.397).

It can be noted that every non-red class has a prefix Wct in its name. Therefore
the hypothesis can be made that the red classes at the bottom are actually context
information.

The match between the design and the code for the four light-green to yellow
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Table 6
Attribute match for class Wct DistItem from component C16. For each pair of

attributes the associated similarity measure is shown.

Design attribute Code attribute Sim.

Wct DistItem Wct DistItem 1
∼Wct DistItem ∼Wct DistItem 1
deleteItemFromDirectory deleteItemFromDirectory 1
extraction extraction 1
init init 1
loadItemStatus loadItemStatus 1
setItemStatusToSENT setItemStatus 0.900
deleteItemFromDatabase loadItemNumberFromDatabase 0.763

classes was then considered in more detail. Class Wct DistItem has an average
similarity measure equal to 0.957 with a same name class in the code. The matched
attributes have been examined, as shown in table 6. In the last column the individual
similarity measures are given for them.

For the first 6 attributes a perfect match with the code could be retrieved. The
last but one attribute, setItemStatusToSENT, is matched with setItemStatus
(similarity 0.900). The difference between the two names is in the suffix ToSENT
specified in the design and omitted in the code. The operation implemented in the code
is probably more general than the one in the design, and an additional parameter can be
used to obtain the specialization represented in the design. It is likely that programmers
recognized the opportunity of being more general with only a minor overhead, and
therefore implemented a higher level function compatible with the needs of the given
component, but more flexible and more reusable. The relatively low similarity level
(0.763) of the last attribute is a hint suggesting a possible deletion of an operation
when moving to coding. An examination of the attribute names seems to confirm such
a hypothesis.

Evolving the design of class Wct DistItem can therefore be obtained by re-
placing the name of attribute setItemStatusToSENTwith setItemStatus and
deleting attribute deleteItemFromDatabase. If such operations are performed,
a perfect match between the design and the code is reached.

When the other three classes in the middle of figure 3 were considered in detail
and the match between their attributes was examined, considerations similar to those for
class Wct DistItem could be made. In one case (class Wct StateCollection)
one of the non-perfect matches between attributes is due to a typing error.

3.6. Design and code dictionaries

After building design and code dictionaries for all components, the presence of
words defined by the designer and not used by the programmer was checked. Only
one occurrence of this case was found. Indeed, it corresponds to a word that, being
misspelled in the design, was corrected when transiting to the code. However, the
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Figure 4. Percentage of code identifiers correctly segmented by using the design dictionary.

number of words added in the code is fairly high, with the noticeable exception of
component C11, for which exactly the same dictionary was used in the design and the
code. The average design dictionary size, over all the analyzed components, is 49.5
words (resulting from 134.1 identifiers), while the code dictionary size is 103.7 words
(from 327.5 identifiers).

A second traceability indicator extracted through the lexical analysis of identifiers
is the amount of code identifiers that can be segmented correctly by using the design
dictionary (figure 4). The 100% segmentation rate obtained for component C11 does
not come as a surprise. More interesting is the case of component C9: a moderate
increment in the number of words (from 127 to 199) makes it impossible to segment
the 98.5% of the code identifiers. In the typical cases, low segmentation rates are
related to the insertion of several new words.

Our analysis seems to suggest that adoption of standard dictionaries, forcing the
developers to choose from a constrained pool of terms, may significantly contribute
to the enhancement of identifiers traceability. In this perspective, the second analysis
performed on the test suite was directed to a better understanding of the nature of the
dictionaries employed. We started by clustering words occurring in the component
dictionaries into 9 distinct sets. Namely: English Forms (EF), as “got” or “users”;
Special Strings (SS), as “<<”; Words Contractions (WC), as “msg” (message); Phrase
Contractions (PC), as “cbk” (call back); Acronyms (A), as “rpc” (remote procedure
call); Isolated Characters (IC); Misspelled and Non-English (MNE); Numbers (N);
Others (O).
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Table 7
Each column refers to one of the different types of words. The number of words in the cumulative
dictionary (union of all component dictionaries) is given, while the sum over all the component dictionaries

is between parentheses.

EF SS WC PC A IC MNE N O

Design 613 (1813) 9 113 (306) 5 10 17 20 29 108 (193)
Code 868 (2823) 10 196 (540) 8 17 23 34 30 108 (328)

In table 7, the outcome of the clustering is reported as resulting from the cumu-
lation of all the component dictionaries. Somewhat unexpectedly, the English Forms
receive the lion’s share, amounting to about five times the Words Contractions. Limited
is the occurrence of Phrase Contractions and Acronyms. Definitely more significant,
and possibly alarming, is the presence of many dozens of Others (words that, by visual
inspection, could not be classified in any of the other categories), and of quite a few
Isolated Characters (which, in some instance, may hint at extreme word contraction).

The high number of English Forms is an indicator of good dictionary traceability.
In fact, the use of synonyms or word changes for English Forms is expected to be
very limited. Words Contractions require on the contrary a closer manual inspection,
since they are more likely to exhibit equivalent variations. They were signalled to the
users for further investigation.

4. Related work

This paper extends previous works [Antoniol et al. 1999; Fiutem and Antoniol
1998] in that a different approach to compute the traceability links is adopted, now
being based on the maximum match algorithm applied to similarity measures be-
tween attributes. In addition, the use of a maximum likelihood classifier makes no
longer necessary the clean up phase. In fact, unmatched classes are determined as a
combination of the outputs from the maximum match and the maximum likelihood
classification algorithms, rather than being produced by a manual cleaning of design
and code representations.

Among the works about model-implementation compliance checking that have
been proposed [Luckham et al. 1987; Meyers et al. 1993; Murphy et al. 1995;
Schwanke 1991; Sefika et al. 1996] in the literature, here we concentrate on those
closest to our approach, i.e., those that explicitly address the problem of checking
design against implementation and are applicable in the object oriented domain.

The work by Meyers et al. [1993] differs from ours both in the objective and in
the implementation. The objective of CCEL is to check the compliance of a program
against a set of design guidelines expressed as constraints that affect single or groups
of classes, while our objective is to check the compliance of a design model against
its implementation. Unlike CCEL, we have an explicit design model which states the
existence of a set of specific entities with specific properties and relations among them
and this must be verified in the implementation.
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The work by Murphy et al. [1995] is much closer to ours. Software reflexion
models can be applied in the OO domain: Murphy et al. refer to an experiment on
an industrial subsystem where a reflexion model was computed to match a design
expressed in the Booch notation against its C++ implementation.

Their process and ours are similar and many analogies can be drawn. We both
use an extraction tool to derive abstract information from source code. The reflexion
model tool is analogous to our design-code matcher, in that they both provide an output
in terms of where the high-level model agrees or disagrees with the source code model.
Where their and our approach mainly differ is in the use of the mapping between the
two models. They use such mapping to trace the source code model entities onto the
high-level model entities. But the nature and granularity of the two models is quite
different: this is why such a mapping is needed. For example, they have modules in
the high-level model and functions in the source code model: the mapping informa-
tion is used to cluster the source code model entities in order to assign them to the
high-level model entities. For this purpose they make use of regular expressions and
exploit naming conventions of source code entities. In our case, the entities of the
two models are exactly the same: classes and relations among them, and matching is
based on similarity of properties, thus allowing a partial matching between entities in
the two models. In fact, coding standards, naming conventions and programming style
may alter design names to accommodate implementation details or shortcuts.

Pattern-Lint, the system developed by Sefika et al. [1996], differs from our work
and Murphy’s, which are based only on static analysis, in that it also integrates dy-
namic visualization, whose results are compared to the static-analysis ones. Although
it is a very general and powerful framework, Pattern-Lint is able to check compliance
of source code with respect to three types of design models: coding guidelines, archi-
tectural models such as design patterns or styles, and heuristic models such as coupling
and cohesion. Pattern-Lint mainly differs from our work in that the tool is not pro-
vided with a high-level model representing all the system directly in terms of classes
and relations to be compared with the corresponding information in the source code.
Higher-level models or partial models, which represent pieces of a system, are provided
to check compliance with specific parts of an implementation. Moreover, Pattern-Lint
does not handle approximate matches like our system does using edit distance.

5. Conclusion

Design documents are often inconsistent with source code implementation. Main-
taining consistency is a costly and tedious activity and reducing time to market is often
vital to face competition. However, being able to trace design into code and to evolve
design is fundamental in both development and maintenance phases of the software
life cycle.

Automatic tools to support design-code compliance check, showing potential
discrepancies and lack of traceability between the two artifacts are thus helpful to
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drive design evolution. Reports about design-code compliance, and graphical plots
such as the pair-difference diagrams, can be used for this purpose.

Industrial software, and especially that developed with OO technology, is often
built using a component-based strategy or based on COTS and libraries. A design-code
compliance check tool must take into account the “physiological” inconsistencies be-
tween design and code represented by reuse and COTS. To properly handle such cases,
a maximum likelihood classifier was applied after the maximum match computation,
to obtain an accurate set of classes to be considered unmatched.

The concept of similarity between entities in the design and in the code, relax-
ing the exact name matching and introducing an edit distance, was the key to find the
best match even in cases in which modifications were introduced in the names of the
attributes.

The design-code compliance check has been applied to an industrial system and
it has allowed to obtain an average traceability of 0.971, with an average of 6.37
unmatched classes in the design. Before applying the maximum likelihood classifier
the average traceability was 0.890 and the number of deleted classes 2.24.

The traceability of the relations between matched classes gives an overall value
of 96.8% generalizations specified in the design and implemented in the code, 33.9%
aggregations and 21.9% associations. The lower traceability of aggregations and asso-
ciations is in part due to the intrinsic limitations of the reverse engineering tool which
extracts them from C++ code.

In a case study the result of the match was considered in a finer detail. For
two matching classes with similarity measure 0.982 the individual differences between
attributes as specified in the design and as implemented in the code were analyzed in
detail, and provided information useful to update the design. The evolved design for
this component could reach a perfect match level (similarity 1) with the code.

Finally the dictionaries constructed for the design and the code revealed that the
words used by the designer to build the identifiers make up also the dictionary used
in the code, with some extensions, thus confirming the important role of names in the
cases in which traceability is only implicitly supported.
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