
Evaluating Three-Dimensional Information Visualization Designs:

a Case Study of Three Designs

Ulrika Wiss David Carr H�akan Jonsson

Dept. of Computer Science and Electrical Engineering

Lule�a University of Technology

971 87 Lule�a, Sweden

Abstract

A number of three-dimensional information visu-

alization designs have been invented during the last

years. However, comparisons of such designs have

been scarce, making it di�cult for application devel-

opers to select a suitable design. This paper reports

on a case study where three existing visualization de-

signs have been implemented and evaluated. We found

that the three information visualization designs have

inherent problems when used for visualizing di�erent

data sets, and that certain tasks can not be supported

by the designs. A general methodology for evaluation

is presented, which comprises evaluation of suitability

for di�erent data sets as well as evaluation of support

for user tasks.

Keywords: 3D information visualization, evaluation,
visualization design, VRML, Java.

1 Introduction

Visualization's primary goal is to make it easier for
people to understand and use vast amounts of data.
Information visualization, as opposed to scienti�c vi-
sualization, aims to visualize abstract data that may
have no natural visual representation. Because of this,
information visualization requires an additional activ-
ity compared to scienti�c visualization: inventing an
information visualization design.

An information visualization application is a soft-
ware system that uses information visualization. It is
targeted towards a set of user tasks that are designed
with certain user skill levels in mind and intended for
a speci�c platform, input devices, etc. Embedded in
such an application is the graphical image of the in-
formation. The information visualization design is the
conceptual description of how this graphical image vi-
sualizes the information. (I.e., what visual elements

the image should contain and how these visual ele-
ments are mapped to the underlying data.) Such a
design can be suitable for a number of di�erent infor-
mation visualization applications.

Technological advances in computer graphics have
made 3-dimensional (3D) information visualization
feasible on personal computers. Meanwhile, the
World-Wide Web (WWW) has made a vast amount
of information available to individuals. In parallel
with these developments a number of 3D information
visualization designs have been invented by both re-
searchers and commercial software developers.

But, the research community has still made very
few comparisons and evaluations of these design in-
ventions. We do not really know how di�erent designs
compare for di�erent data sets or user tasks. This
means that it is di�cult to make a decision as to which
information visualization design to use when designing
an information visualization application.

As a �rst step towards such an understanding, we
have implemented three existing 3D information visu-
alization designs: the Cam Tree [10], the Information
Cube [8], and the Information Landscape [1, 13]. Our
implementation was used to visualize a number of dif-
ferent data sets { two of which we use as a basis for
our discussion in this paper.

We begin by discussing previous work in classi-
fying and evaluating information visualization design
and by giving examples of 3D information visualiza-
tion designs (Section 2). Next, we describe the three
information visualization designs that we have imple-
mented (Section 3) and the details of our implementa-
tion (Section 4). This is followed by a comparison of
the three visualizations based on our implementation
(Section 5). Finally, we draw some tentative conclu-
sions and point out further research directions (Sec-
tion 6).



2 Previous Work

2.1 Related Designs

Information visualization designs similar to the
Cam tree include the work of Munzner and Bur-
chard [7] which displays directed graphs with cy-
cles (such as the WWW) in hyperbolic space. The
SeeNet3D information visualization application [4] vi-
sualizes global networks on a sphere and local net-
works on a map image.

The Bead [3] system is similar to the Informa-
tion Landscape. It displays bibliographic data with
documents as cubes interconnected by triangles in a
landscape-like space.

Nested designs, such as the Information Cube, are
more uncommon. Feiner and Beshers [5] present the
n-Vision system for visualizing multi-dimensional data
(more than 3 dimensions). The visualization consists
of nested 3D coordinate systems with axes. The Web
Forager and the Web Book [2] adopt a metaphorical
nesting, where WWW pages are contained in books,
that in turn can be contained in book shelves placed
in a 3D room.

Another type of 3D information visualization de-
sign (not represented in our selection) is raised sur-
faces, where information is displayed on a surface that
can be raised towards the user to provide extra detail.
An example of this is the Document Lens [9], which
is used for laying out pages of a document on a rect-
angular surface. 3DPS (3-Dimensional Pliable Sur-
faces) [11] is another example of this type of design,
an information visualization application for distortion
based display of maps and graphs.

2.2 Evaluation of 3D User Interfaces

Previous work in evaluating 3D user interfaces
mainly concentrates on experimental evaluation of the
lower level cognitive aspects. The work of Hubona,
Shirah and Fout [6] suggests that users' understand-
ing of a 3D structure improves when they can manip-
ulate the structure. The work of Ware and Franck [14]
indicates that displaying data in three dimensions in-
stead of two can make it easier for users to understand
the data. Our work complements this type of evalua-
tion by considering higher-level properties speci�c for
3D information visualization designs { suitability for
di�erent data sets and support for user tasks.

3 The Three Designs

Since our aim was to compare visualizations of
the same data sets, we implemented three existing 3D

information visualization designs that all visualize hi-
erarchical data: The Cam Tree [10], the Information
Cube [8] and the Information Landscape [1, 13].

We chose these three information visualization de-
signs since they are all di�erent in the way they visu-
alize the hierarchical data. The Cam Tree and the In-
formation Landscape both lay out the data in a \tradi-
tional" tree, but di�er in their use of the 3D space, the
Information Landscape being a \2.5 D" visualization.
The Information Cube instead represents parent-child
relationships by nesting children inside parents.

3.1 The Cam Tree

The Cam Tree visualizes hierarchies as trees of
labeled rectangular shapes representing nodes and
leaves, interconnected by lines. Each subtree is laid
out as a cone with its root at the top of the cone and
the children along the cone base. Rectangles and cones
are semi-transparent in order to reduce problems with
occlusion. Figures 1 and 4 show our implementation
of the Cam Tree. In the cited paper [10], the informa-
tion visualization design included the shadow of the
tree placed underneath the tree. We did not imple-
ment this since its importance was said to be small.

Interactions with the Cam Tree includes rotation
of the tree when a node or leaf has been selected with
the mouse. This brings the path to the selected rect-
angle closest to the user and highlights the rectangles
on that path. It is also possible to prune the tree via
a control panel with buttons.

3.2 The Information Cube

The Information Cube uses semi-transparent,
nested cubes to represent leaves or internal nodes. The
parent-child relationships are represented by nesting
child cubes inside their parent cubes, scaling cubes to
enclose the contained cubes. Textual labels are dis-
played on cube surfaces. Color and transparency level
indicate the currently selected cube. Figures 2 and 5
show our implementation of the Information Cube.

The original system is designed for use with spe-
cial virtual reality equipment. Our implementation
relies entirely on the VRML browser's interface for in-
teractions. We found this su�cient, since the purpose
of our study was to evaluate the graphic visualization
rather than the interactions.

3.3 The Information Landscape

Our implementation of the Information Land-
scape is based on the File System Navigator (fsn) [13]
from Silicon Graphics and the Harmony Information



Landscape [1]. These two information visualization
designs are similar, basically di�ering only in how they
are used by the surrounding information visualization
application.

In the Information Landscape, nodes are rep-
resented as pedestal shapes standing on a at sur-
face with lines connecting pedestals to form a tree.
Leaves are represented as box shapes standing on the
pedestals. This makes the pedestal cross-section pro-
portional to the number of leaf children. The height
of the boxes encodes an attribute such as the size of
the data element represented by the box. Being a \2.5
D" visualization, the pedestals are restricted to a at
surface in 3D space. Only the box height makes use
of the third dimension. Figures 3 and 6 show our im-
plementation of the Information Landscape.

Interactions in the Information Landscape include
selecting boxes or pedestals with the mouse and \y-
ing" up to a viewpoint close to the selected element.

4 Implementation

Our entire system for 3D information visualization
is implemented in the programming language Javatm

from Sun Microsystems, and the Virtual Reality Mod-
eling Language (VRML). It should be further noted
that we make no use of special hardware. The in-
teraction with a particular visualization is performed
only by using a mouse and a keyboard. The actual
visualization is shown on a conventional screen.

The system consists of two parts:

1. A visualization generator written in Java that
takes hierarchical data as input and produces
VRML code for visualizations consistent with the
three designs mentioned above, and

2. A client application consisting of a WWW page
de�ned by VRML code produced by the visual-
ization generator and a Java applet that controls
the visualization via the External Authoring In-
terface, as described below.

4.1 The Visualization Generator

The visualization generator transforms hierarchi-
cal data into VRML code representing a 3D visualiza-
tion. The hierarchical data is represented internally
as a tree which is built as the data is read. Currently,
the generator is able to read data from two sources, a
database with articles of an electronic newspaper and
a subtree in a �le system.

Once all the data has been read and the tree has
been built, an initial layout of the tree in a virtual 3D

(Euclidean) space is computed. The layout speci�es
that a 3D object occupies some distinct portion of 3D
space. Depending on the layout rules used during con-
struction, di�erent algorithms for producing layouts
di�er tremendously in complexity. Some layouts con-
tain optimization problems which are NP-Complete.
(For example, general problems of packing 3D objects
into minimal space.) Since the three papers do not
clearly state which algorithms were used to produce
the layouts and our objective was not to improve their
implementations or optimize resources such as mem-
ory or CPU time, we used fairly simple non-optimizing
algorithms. We prioritized creating layouts and visu-
alizations closely corresponding to those given in the
papers.

The layout algorithms for the three designs are
very similar and work in two steps. During the �rst
step, the layout of the visualization is computed. The
tree is traversed recursively, and the layout of a node
is based on the layout of its children. In all three
designs, the layouts are done so that no pair of 3D ob-
jects intersect. The layout is also done to enable 3D
objects to be moved in 3D space without bumping into
each other. For the Cam Tree, the algorithm calcu-
lates the necessary base circumference for each node's
underlying cone. For the Information Cube, the algo-
rithm instead calculates how big each cube must be to
�t all its children inside. For the Information Land-
scape, the algorithm calculates how much space in the
X direction each node needs for all of its children.

The second step consists of creating VRML code.
The VRML code created includes a 3D shape for each
node in the tree and positional information for each
node based on the information from the �rst step. For
the Cam Tree, sibling nodes and leaves are positioned
at equal distances around the bottom circumference of
their parent cone. Nodes and leaves alternate to min-
imize the risk for intersecting subtrees. For the Infor-
mation Landscape, the algorithm takes a pessimistic
approach: the sides of each cube are made big enough
to �t the d 3

p
n e largest child cubes, where n is the

number of children. For the Information Landscape,
the algorithm positions nodes so that no subtrees over-
lap. It also adjusts the space between the rows that
make up the levels so that we do not get connecting
lines that are di�cult to follow.

4.2 The Client Application

We implemented the client application using the
External Authoring Interface (EAI) which is a pro-
posal for a VRML 2.0 Informative Annex. The EAI is
currently implemented in the Cosmo Playertm by Sili-



Figure 1: Our implementation of the Cam Tree visualizing
the file system data set.

Figure 2: Our implementation of the Information Cube visu-
alizing the file system data set

Figure 3: Our implementation of the Information Landscape
visualizing the file system data set

Figure 4: Our implementation of the Cam Tree visualizing
the newspaper TOC data set. Note the occlusion on the
right hand side of the tree.

Figure 5: Our implementation of the Information Cube visu-
alizing the newspaper TOC data set. Note the excess space
in the cube, and the small child cube in the top left corner.

Figure 6: Our implementation of the Information Landscape
visualizing the newspaper TOC data set. Note that the right-
most part of the tree can not be seen.



con Graphics. Via the EAI, Java applets on a WWW
page can obtain access to objects within a VRML
world on that same page. We choose this implementa-
tion strategy to achieve a platform independent, easily
distributed solution. The speed and ease by which the
system could be implemented was another reason for
our choice. Beta-quality EAI tools, and a relatively
slow rendering speed for the 3D world, were the main
problems with this implementation choice.

Alternative implementation choices included im-
plementing the visualizations in VRML only, or in
Java only. As for VRML only, we found that the
interaction possibilities built into VRML were a bit
too limited. We also found that it is di�cult to let
actions within the world have any e�ects outside of
the world, something we anticipated needing for fu-
ture work. Implementing in Java only was rejected
because of the lack of standard 3D libraries for Java
at the time. We also anticipated that a Java applet
with graphics possibilities would involve the need to
download a great number of classes to the client while
VRML is a relatively lightweight description language.

5 Comparing the Visualizations

Our methodology for comparing the three visual-
izations aim to give guidance to the suitability of each
design for speci�c usage situations. The methodology
proposes the following heuristics:

1. Select a number of information visualization de-
signs that seem suitable for the problem at hand.

2. Evaluate suitability for di�erent data sets:

(a) Construct two or three di�erent data sets
that represent possible data for the applica-
tion.

(b) Create visualizations of these data sets with
all the selected information visualization de-
signs. This can be done with simple paper
mockups if an implementation is regarded as
too time-consuming.

(c) Use the visualizations to �nd problems with
visualizing the di�erent data sets.

3. Evaluate support for user tasks:

(a) Do a task analysis in order to identify im-
portant tasks that the visualizations need to
support.

(b) Compare the selected designs against these
important tasks. The visualizations created
in the previous step may be used as a help
in this evaluation.

4. Use results from these two evaluations to decide:

(a) Which of the selected information visualiza-
tion designs to use in the information visual-
ization application (possibly more than one).

(b) What additional functionality to include in
the information visualization application.

Section 5.1 presents step 2 (evaluating suitabil-
ity for di�erent data sets) for our three visualization
designs, and Section 5.2 presents step 3 (evaluating
support for user tasks).

5.1 Suitability for Di�erent Data Sets

As described in Section 4.1 above, our algorithms
for laying out the visualizations aimed to make the re-
sulting visualization similar to the description in the
articles. Naturally, we can not be sure that our layout
algorithms were similar to the ones used by the au-
thors. Nevertheless, we will attempt to evaluate how
the information visualization designs work with data
sets that are di�erent than the ones described in the
referenced publications.

We chose to visualize an electronic-newspaper
table-of-contents (TOC) and part of a �le system with
the three di�erent information visualization designs.
In both data sets, interior nodes and leaves have dif-
ferent properties. The interior nodes primarily act as
containers for data while leaves make up the actual
data of interest (the �le or the newspaper article).
The �le system data set is a relatively small and well
balanced data set. It contains 30 leaves and 8 inter-
nal nodes on four levels, and most of the leaves are
on the third and fourth level. The newspaper TOC
data set, on the other hand, is larger and more un-
balanced. It contains 56 leaves and 14 internal nodes
on �ve levels. One of the branches contains 34 leaves
and is the only one extending to the �fth level. Screen
shots of the �le system visualizations can be seen in
Figures 1, 2, and 3. Figures 4, 5, and 6 show screen
shots of the newspaper TOC visualizations.

For the Cam Tree, a data set with many levels and
many subhierarchies will result in occluded subtrees.
In the pictures in Robertson et al [10], the visualized
data sets have few levels and not many subhierarchies
on each level. As a result, the occlusion is not very dis-
turbing. But for both of our data sets, we get a Cam
Tree with many occlusions. Even though the Cam
Tree uses transparency to mitigate occlusion, viewing
is di�cult even for the relatively small and well bal-
anced �le system data set (Figure 1). As seen in Fig-
ure 4, the occlusion is even worse with the newspaper
TOC data set.

For the Information Cube, we will get excess space
inside each cube if there are fewer than d 3

p
n e3 chil-



dren or if the children are of varying sizes. The result-
ing size of the surrounding cube will then not represent
the size of the contents very well.

Yet another problem for this type of data is that
if the di�erence between the biggest and the smallest
subhierarchy is large, the smallest child cube will be
so small that it is di�cult to see. This can be seen in
both of our data sets. In our visualization of the �le
system, �les on the �rst level are very small compared
to directories (Figure 2). In our visualization of the
newspaper table-of-contents the sizes of leaves do not
vary (Figure 5). However, the e�ect can still be seen
even though it is not as disturbing.

For the Information Landscape, we get some ex-
cess space in the X direction when subhierarchies are
of varying size, which in turn makes the landscape
wide. A typical viewpoint for the Information Land-
scape is \oating" above the surface right behind a
node and viewing its subtrees as they spread out into
the distance. With a very wide landscape, it becomes
di�cult to see the entire subtree from this position.
Either we will need to move the viewpoint back caus-
ing the boxes and pedestals to shrink, or part of the
subtree will not �t on the display. With the �le sys-
tem data set shown in Figure 3, this is not necessary.
But, the more unbalanced and larger newspaper TOC
data set (Figure 6) illustrates how the rightmost nodes
disappear from sight. This is probably part of the
reason why both Information Landscape applications
described include an overview map.

So, in conclusion, all three information visualiza-
tion designs create problems with di�erent data sets.
The Cam Tree produces a clutter for \bottom heavy"
data sets (i.e., hierarchies with many wide subhierar-
chies). Even with the relatively small �le system data
set this is a problem. The Information Cube will show
misrepresented sizes as soon as the contained cubes
are of varying sizes. This is often the case when a
parent node contains both leaves and subhierarchies.
The ideal data set for the Information Cube would be
a hierarchy where all leaves are at the same level. This
is a property that neither of our data sets have. The
Information Landscape has problems with data sets
where a node has many children. This creates a wide
layout that can not be seen all at once. The placement
and number of leaves is of less importance.

If it is possible to predict what structure the data
will have, this may help in deciding what information
visualization design is most suitable. But if the appli-
cation should be able to support arbitrary data sets
which can be expected in many types of applications,
selecting an information visualization design will be

di�cult. One strategy for handling this is to design
the information visualization application so that it can
alleviate these problems, such as adding an overview
map to an Information Landscape application. An-
other strategy is to provide several alternative visual-
izations in the same application, giving users multiple
views of the same data set.

5.2 Support for User Tasks

Our task analysis is based on Shneiderman [12],
who presents seven high level tasks that an infor-
mation visualization application should support. For
evaluation purposes, we must re�ne these into lower-
level tasks for the two application domains represented
by our two data sets, the newspaper TOC and the �le
system data set.

Overview: Gain an overview of the entire collection.

For the overview task, the user might want some-
what di�erent information about a �le system
than a newspaper TOC. For the �le system, it
is interesting to see the size of the leaves, i.e. the
�les. For the newspaper TOC, sizes of leaves (ar-
ticles) are not as interesting as the actual number
of leaves, both totally and in each section.

Zoom: Zoom in on items of interest. When zoom-
ing, it is important that global context can be
retained. If it can not, it may be necessary to
add some type of overview map in the applica-
tion where the visualization is embedded.

Filter: Filter out uninteresting items. Filtering by re-
moving parts of the visualization will necessarily
disturb the global context. Therefore, it is im-
portant to see whether the design supports some
kind of abstraction of the removed parts.

Details-on-demand: Select an item or group and

get details when needed. Getting details on a se-
lected item is usually implemented by the embed-
ding application. One variant of this that could
be supported by the information visualization de-
sign is level-of-detail: increasing the amount of
detail showed in the visualization when the user
gets close to it.

Relate: View relationships among items. For a hier-
archical data structure, it is absolutely necessary
that a visualization shows parent-child relation-
ships. The three designs do this in very di�erent
ways. This a�ects how well the user can separate
nodes from leaves { something that is interesting
both for the newspaper TOC and �le system.



History: Keep a history of actions to support undo,

replay, and progressive re�nement. A possible use
of this for the newspaper TOC would be showing
what articles the user has read, \visited", and
possibly in what order. For the �le system, if the
information visualization application allows us to
delete, create, and move �les and directories, we
need some way to show the previous state of the
data.

Extract: Allow extraction of sub-collections and of

query parameters. This task concerns saving the
current state of the visualization. This is related
only to the application and the underlying data
set. How the data is visualized does not a�ect
this. The extract task is therefore excluded from
our evaluation.

An information visualization application normally
consists of an embedded visualization where interac-
tions can be done either directly in the visualization or
via some type of control panel. This entire application
should support the seven tasks. However, evaluating
the information visualization design in isolation, we
can only look at whether it can be used for imple-
menting a speci�c task or not. It is then up to the
application to implement the tasks. Table 1 summa-
rizes how the three information visualization designs
support implementing these tasks.

This evaluation shows that the way a certain in-
formation visualization design visualizes information
may make it impossible to support a certain task. For
example, it is not possible to retain global context
while zooming-in with an Information Cube or an In-
formation Landscape. Some designs may be modi�ed
to support a certain task. For example, a visitation
path can be supported by the Cam Tree if we color
nodes and links that are part of this path. However,
this may interfere with the original design where color
highlighting is used to denote the path to the currently
selected node. Such modi�cations must be done very
carefully in order to avoid undesirable side e�ects.

When creating an information visualization appli-
cation, it is important to identify primary tasks before
choosing an information visualization design. If a task
can not be supported by the selected design, we must
either consider modifying the design, or we must add
extra functionality to our application. The overview
map used in Information Landscape applications is an
example of the latter strategy. Another alternative
would be to include several di�erent visualizations in
the application.

Task Subtask Cam Tree Information
Cube

Information
Landscape

Overview Size of
leaves not sup-

ported

supported,
but
occluded
on lower
levels

supported

Number
of leaves

supported supported,
but
occluded
on lower
levels

supported

Zoom Global
context
retained

supported not sup-
ported

not
supported

Filter Abstraction not
supported

partly
supported
(by lower
level
occlusion)

not
supported

Details-
on-
demand

Level-of-
detail

not
supported

supported
(by dimin-
ished
occlusion)

not
supported

Relate Separating
nodes and
leaves

minimally
supported

somewhat
supported
(color)

well
supported

History Visiting
path

can be
supported

can not be
supported
easily
(due to
nesting)

can be
supported

Previous
state

can be
supported

can be
supported

can be
supported

Table 1: Task support by the three information visualization
designs.

6 Conclusions and Future Work

We have implemented three di�erent information
visualization designs and visualized two di�erent data
sets with them. The visualizations have then been
compared and evaluated with regard to their suitabil-
ity for di�erent data sets, as well as their support for
user tasks. We have outlined a methodology (Sec-
tion 5) for this evaluation, which can be applied to any
type of information visualization and does not neces-
sarily need to include implementation. We believe it
can be very useful when designing an information vi-
sualization application.

Our evaluation results have pointed out some im-
portant di�erences in these three information visual-
ization designs which were not obvious from the origi-
nal descriptions. These results can serve as an impor-
tant help in choosing information visualization designs
for speci�c information visualization applications.

Firstly, the three information visualization designs
behave di�erently when used for visualizing di�erent
data sets. While the descriptions often concentrate on
data sets that are suitable for their designs, our work
has shown that data sets with other properties may
cause signi�cant problems in viewing the visualization.



It is very important to consider this when using an
information visualization design in an application.

Secondly, information visualization designs are of-
ten targeted towards a speci�c problem and support
tasks associated with this problem very well. But, this
also means that the designs make it di�cult or impos-
sible to support other user tasks. This is seldom men-
tioned in the descriptions, but is crucial when choosing
a design for a speci�c set of tasks.

In order to make use of all the research in invent-
ing information visualization designs, we propose the
use of several di�erent designs in the same information
visualization application. In our opinion, this would
be advantageous both for the users and the develop-
ers. The developers would be able to reuse the work of
information visualization researchers and concentrate
on integration, presentation, and additional function-
ality. The users would be given a greater freedom to
explore the information in many di�erent ways making
use of the advantages of each design as needed.

To support this, future work in this area should
include experiments that address the usability of such
a multi-visualization view of the data. We need to
�nd out whether the user's understanding of the data
and task performance will bene�t from this and if they
will be able to form a consistent mental model of the
underlying data in spite of the di�erences in visual ap-
pearance. Future work will also need to include the
exploration of software architectures to support co-
ordination and presentation of several visualizations,
maintaining data consistency, and achieving accept-
able performance in the rendering of visualizations.

Finally, we have gained some experience in im-
plementing 3D information visualization designs. As
for layout algorithms, it is crucial to be aware of the
criteria we have for the visualization. Do we want to
minimize the amount of unused 3D space? Do we want
to minimize overlapping? Since an optimal layout is
often impossible, we need to be aware that there is a
tradeo� between di�erent criteria.

Acknowledgments

We would like to thank K�are Synnes, Peter
Parnes, Serge Lachapelle, and Jan-Erik Mostr�om (all
of Lule�a University of Technology) for advice and com-
ments. Thanks also to Siv Wiss for proofreading.

References

[1] Keith Andrews. Visualizing Cyberspace: Information
Visualization in the Harmony Internet Browser. In
Proceedings of Information Visualization, pages 97{
104. IEEE, 1995.

[2] Stuart K Card, George G Robertson, and William
York. The WebBook and the Web Forager: An In-
formation Workspace for the World-Wide Web. In
Proceedings of CHI'96, pages 111{117. ACM, 1996.

[3] Matthew Chalmers, Robert Ingram, and Christoph
Pfranger. Adding Imageability Features to Informa-
tion Displays. In Proceedings of UIST'96, pages 33{
39. ACM, 1996.

[4] Kenneth C Cox, Stephen G Eick, and Taosong He.
3D Geographic Network Displays. Sigmod Record,
25(4):50{54, December 1996.

[5] Steven Feiner and Cli�ord Beshers. Worlds within
Worlds: Metaphors for Exploring n-Dimensional Vir-
tual Worlds. In Proceedings of UIST'90, pages 76{83.
ACM, 1990.

[6] Geo�rey S Hubona, Gregory W Shirah, and David G
Fout. 3D Object Recognition with Motion. In Ex-
tended Abstracts of CHI'97, pages 345{346. ACM,
1997.

[7] Tamara Munzner and Paul Burchard. Visualizing the
Structure of the World Wide Web in 3D Hyperbolic
Space. In Proceedings of VRML '95, pages 33{38.
ACM, 1995.

[8] Jun Rekimoto and Mark Green. The Information
Cube: Using Transparency in 3D Information Visual-
ization. In Proceedings of the Third Annual Workshop
on Information Technologies & Systems (WITS'93),
pages 125{132, 1993.

[9] George G Robertson and Jock D Mackinlay. The Doc-
ument Lens. In Proceedings of UIST'93, pages 101{
108. ACM, 1993.

[10] George G Robertson, Jock D Mackinlay, and Stuart K
Card. Cone Trees: Animated 3D Visualizations of Hi-
erarchical Information. In Proceedings of SIGCHI'91,
pages 189{194. ACM, 1991.

[11] M Sheelagh, T Carpendale, David J Cowperthwaite,
and F David Fracchia. 3-Dimensional Pliable Sur-
faces: For the E�ective Presentation of Visual Infor-
mation. In Proceedings of UIST'95, pages 217{226.
ACM, 1995.

[12] Ben Shneiderman. The Eyes Have It: A Task by
Data Type Taxonomy for Information Visualizations.
In Proceedings of 1996 IEEE Visual Languages, pages
336{343. IEEE, 1996.

[13] J Tesler and S Strasnick. FSN: 3D Information Land-
scapes, 1992. Man page entry for an unsupported but
publically released system from Silicon Graphics, Inc.

[14] Colin Ware and Glenn Franck. Viewing a Graph in
a Virtual Reality Display is Three Times as Good as
a 2D Diagram. In Proceedings of 1994 IEEE Visual
Languages, pages 182{183. IEEE, 1994.


