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Abstract. Complex programs often contain multiple, interwoven strands of computation, each responsible for
accomplishing a distinct goal. The individual strands responsible for each goal are typically delocalized and
overlap rather than being composed in a simple linear sequence. We refer to these code fragments as being
interleaved Interleaving may be intentional-for example, in optimizing a program, a programmer might use
some intermediate result for several purposes—or it may creep into a program unintentionally, due to patches,
quick fixes, or other hasty maintenance practices. To understand this phenomenon, we have looked at a variety
of instances of interleaving in actual programs and have distilled characteristic features. This paper presents our
characterization of interleaving and the implications it has for tools that detect certain classes of interleaving and
extract the individual strands of computation. Our exploration of interleaving has been done in the context of a case
study of a corpus of production mathematical software, written in Fortran from the Jet Propulsion Laboratory. This
paper also describes our experiences in developing tools to detect specific classes of interleaving in this software,
driven by the need to enhance a formal description of this software library’s components. The description, in turn
aids in the automated component-based synthesis of software using the library.

With every leaf a miracle.
— Walt Whitman.
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1. Introduction

Imagine being handed a software system you have never seen before. Perhaps you need to
track down a bug, rewrite the software in another language or extend it in some way. We
know that software maintenance tasks such as these consume the majority of software costs
(Boehm, 1981), and we know that reading and understanding the code requires more effort
than actually making the changes (Fjeldstad and Hamlen, 1979). But we do not know what
makes understanding the code itself so difficult.

Letovsky has observed that programmers engaged in software understanding activities
typically ask “how” questions and “why” questions (Letovsky, 1988). The former require
an in-depth knowledge of the programming language and the ways in which programmers
express their software designs. This includes knowledge of common algorithms and data
structures and even concerns style issues, such as indentation and use of comments. Nev-
ertheless, the answers to “how” questions can be derived from the program text. “Why”
guestions are more troublesome. Answering them requires not only comprehending the
program text but relating it to the program’s purpose — solving some sort of problem. And
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the problem being solved may not be explicitly stated in the program text; nor is the rationale
the programmer had for choosing the particular solution usually visible.

This paper is concerned with a specific difficulty that arises when trying to answer “why”
guestions about computer programs. In particular, it is concerned with the phenomenon
of interleaving in which one section of a program accomplishes several purposes, and
disentangling the code responsible for each purpose is difficult. Unraveling interleaved code
involves discovering the purpose of each strand of computation, as well as understanding
why the programmer decided to interleave the strands. To demonstrate this problem, we
examine an example program in a step-by-step fashion, trying to answer the questions “why
is this program the way it is?” and “what makes it difficult to understand?”

1.1. NPEDLN

The Fortran program, calledPEDLN is part of thespICELIB library obtained from the Jet
Propulsion Laboratory and intended to help space scientists analyze data returned from
space missions. The acronywrEDLNstands for arest Bint on Hlipsoid to Line. The
ellipsoid is specified by the lengths of its three semi-axes,(andc), which are oriented

with the z, y, and z coordinate axes. The line is specified by a pointig€PT) and a
direction vector (INEDR). The nearest point is contained in a variable caltedar The

full program consists of 565 lines; an abridged version can be found in the Appendix with
a brief description of subroutines it calls and variables it uses. The executable statements,
with comments and declarations removed, are shown in Figure 1.

The lines of code inPEDLNhat actually compute the nearest point are somewhat hard to
locate. One reason for this has to with error checking. Itturns ousthakLig includes an
elaborate mechanism for reporting and recovering from errors, and roughly half of the code
in NPEDLNis used for this purpose. We have indicated those lines by shading in Figure 2.
The important point to note is that although itis natural to program in a way that intersperses
error checks with computational code, it is not necessary to do so. In principal, an entirely
separate routine could be constructed to make the checksramiNcalled only when all
the checks are passed. Although this approach would require redundant computation and
potentially more total lines of code, the resultant computatiome#pLnwould be shorter
and easier to follow.

In some sense, the error handling code and the rest of the routine riealeendent
plans. We use the terplan to denote a description or representation of a computational
structure that the designers have proposed as a way of achieving some purpose or goal
in a program. This definition is distilled from definitions in (Letovsky and Soloway, 1986,
Rich and Waters, 1990, Selfridge et al., 1993). Note that a plan is not necessarily stereotyp-
ical or used repeatedly; it may be novel or idiosyncratic. Following (Rich and Waters, 1990,
Selfridge et al., 1993) , we reserve the techiché for a plan that represents a standard,
stereotypical form, which can be detected by recognition techniques, such as (Hartman,
1991, Letovsky, 1988, Kozaczynski and Ning, 1994, Quilici, 1994, Rich and Wills, 1990,
Wills, 1992). . Plans can occur at any level of abstraction from architectural overviews to
code. By extracting the error checking plan froaimebLy we get the much smaller and,
presumably, more understandable program shown in Figure 3.
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SUBROUTINE NPEDLN ( A, B, C, LINEPT, LINEDR,
PNEAR, DIST)
C
IF (RETURN () ) THEN
RETURN
ELSE
CALL CHKIN ('NPEDLN")
END IF
c
CALL UNORM ( LINEDR, UDIR, MAG )
IF (MAG .EQ. 0) THEN
CALL SETMSG( 'Line direction vector
is the zero vector. ')
CALL SIGERR( 'SPICE(ZEROVECTOR)")
CALL CHKOUT('NPEDLN")
RETURN
ELSE IF ( (A .LE. 0.DO)
.OR. (B.LE.0.DO)
. .OR. (C.LE.0.DO))
THEN
CALL SETMSG ( 'Semi-axes: A = #,
B=# C=#")
CALL ERRDP ('#,A)
CALL ERRDP ('#,B)
CALL ERRDP ('#,C)
CALL SIGERR (‘'SPICE(INVALIDAXISLENGTHY)')
CALL CHKOUT ('NPEDLN")
RETURN
END IF
SCALE = MAX ( DABS(A), DABS(B), DABS(C) )
SCLA A/ SCALE
SCLB B/SCALE
SCLC = C/SCALE
IF( (SCLA**2 .LE. 0.DO)
..OR. (SCLB**2 .LE. 0.D0)
..OR. (SCLC**2 .LE.0.D0)) THEN
CALL SETMSG ( 'Semi-axis too small:
A=#B=#C=#")
CALL ERRDP ('#,A)
CALL ERRDP ('#,B)
CALL ERRDP ('#,C)
CALL SIGERR ('SPICE(DEGENERATECASE)')
CALL CHKOUT ('NPEDLN')
RETURN
END IF
C Scale LINEPT.
SCLPT(1) = LINEPT(1)/ SCALE
SCLPT(2) = LINEPT(2)/ SCALE
SCLPT(3) = LINEPT(3)/ SCALE
CALL VMINUS (UDIR, OPPDIR)

Figure 1. NPEDLNMINUS comments and declarations.

CALL SURFPT (SCLPT, UDIR, SCLA, SCLB,
SCLC, PT(1,1), FOUND(1))

CALL SURFPT (SCLPT, OPPDIR, SCLA,
SCLB, SCLC, PT(1,2), FOUND(2))

DO 50001
S 1=1,2
IF (FOUND(I) ) THEN
DIST = 0.0D0
CALLVEQU (PT(Ll), PNEAR)
CALL VSCL (' SCALE,PNEAR, PNEAR )
CALL CHKOUT ('NPEDLN')
RETURN
END IF
50001 CONTINUE
c

NORMAL(1) = UDIR(1) / SCLA**2
NORMAL(2) = UDIR(2) / SCLB**2
NORMAL(3) = UDIR(3) / SCLC**2
CALL NVC2PL ( NORMAL, 0.D0, CANDPL )
CALL INEDPL ( SCLA, SCLB, SCLC, CANDPL,
CAND, XFOUND )
IF (.NOT. XFOUND ) THEN
CALL SETMSG ( 'Candidate ellipse could not
be found." )
CALL SIGERR ('SPICE(DEGENERATECASE)')
CALL CHKOUT ('NPEDLN")
RETURN
END IF
CALL NVC2PL ( UDIR, 0.DO, PRJPL)
CALL PJELPL ( CAND, PRJPL, PRJEL)
c
CALL VPRJP (SCLPT, PRJPL, PRJPT )
CALL NPELPT ( PRJPT, PRJEL, PRINPT)
DIST = VDIST ( PRINPT, PRJPT)

c
CALL VPRJPI ( PRINPT, PRJPL, CANDPL, PNEAR,
IFOUND )

IF (.NOT. IFOUND ) THEN

CALL SETMSG ( 'Inverse projection could not
be found." )

CALL SIGERR ('SPICE(DEGENERATECASE)" )
CALL CHKOUT ('NPEDLN")
RETURN

END IF

CALL VSCL ( SCALE, PNEAR, PNEAR)

DIST = SCALE*DIST

CALL CHKOUT ('NPEDLN')

RETURN

END
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SUBROUTINE NPEDLN (A, B, C, LINEPT, LINEDR,
PNEAR, DIST)
Cc
IF (RETURN () ) THEN
RETURN
ELSE
CALL CHKIN ('NPEDLN")
END IF
Cc
CALL UNORM ( LINEDR, UDIR, MAG )
IF (MAG .EQ. 0) THEN
CALL SETMSG( 'Line direction vector
is the zero vector. ')
CALL SIGERR( 'SPICE(ZEROVECTOR)")
CALL CHKOUT('NPEDLN")
RETURN
ELSE IF ( (A .LE. 0.DO)
. .OR. (B .LE.0.DO)
.OR. (C.LE.0.DO))
THEN
CALL SETMSG ( 'Semi-axes: A = #,
B=# C=#")
CALL ERRDP ('#,A)
CALL ERRDP ('#,B)
CALL ERRDP ('#,C)
CALL SIGERR (‘'SPICE(INVALIDAXISLENGTH)')
CALL CHKOUT ('NPEDLN")
RETURN
END IF
SCALE = MAX ( DABS(A), DABS(B), DABS(C) )
SCLA = A/SCALE
SCLB = B/SCALE
SCLC = C/SCALE
IF( (SCLA**2 .LE. 0.DO)
..OR. (SCLB**2 .LE. 0.DO)
..OR. (SCLC**2 .LE.0.D0)) THEN
CALL SETMSG ( 'Semi-axis too small:
A=#B=#C=#")
CALL ERRDP ('#,A)
CALL ERRDP ('#,B)
CALL ERRDP ('#,C)
CALL SIGERR ('SPICE(DEGENERATECASE)")
CALL CHKOUT ('NPEDLN")
RETURN
END IF
C Scale LINEPT.
SCLPT(1) = LINEPT(1) / SCALE
SCLPT(2) = LINEPT(2)/ SCALE
SCLPT(3) = LINEPT(3)/SCALE
CALL VMINUS (UDIR, OPPDIR)

Figure 2. Code with error handling highlighted.
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CALL SURFPT (SCLPT, UDIR, SCLA, SCLB,
SCLC, PT(1,1), FOUND(1))

CALL SURFPT (SCLPT, OPPDIR, SCLA,
SCLB, SCLC, PT(1,2), FOUND(2))

DO 50001
C1=1,2
IF (FOUND(I) ) THEN
DIST = 0.0D0
CALLVEQU (PT(Ll), PNEAR)
CALL VSCL ( SCALE,PNEAR, PNEAR )
CALL CHKOUT ('NPEDLN')
RETURN
END IF
50001 CONTINUE
c

NORMAL(1) = UDIR(1) / SCLA**2
NORMAL(2) = UDIR(2) / SCLB**2
NORMAL(3) = UDIR(3) / SCLC**2
CALL NVC2PL ( NORMAL, 0.D0, CANDPL )
CALL INEDPL ( SCLA, SCLB, SCLC, CANDPL,
CAND, XFOUND )
IF (.NOT. XFOUND ) THEN
CALL SETMSG ( 'Candidate ellipse could not
be found." )
CALL SIGERR ('SPICE(DEGENERATECASE)')
CALL CHKOUT ('NPEDLN")
RETURN
END IF
CALL NVC2PL ( UDIR, 0.DO, PRJPL)
CALL PJELPL ( CAND, PRJPL, PRJEL)
C
CALL VPRJP (SCLPT, PRJPL, PRJPT )
CALL NPELPT ( PRJPT, PRJEL, PRINPT)
DIST = VDIST ( PRINPT, PRJPT)

C
CALL VPRJPI ( PRINPT, PRJPL, CANDPL, PNEAR,
IFOUND )

IF (.NOT. IFOUND ) THEN

CALL SETMSG ( 'Inverse projection could not
be found." )

CALL SIGERR ('SPICE(DEGENERATECASE)')
CALL CHKOUT ('NPEDLN")
RETURN

END IF

CALL VSCL ( SCALE, PNEAR, PNEAR)

DIST = SCALE*DIST

CALL CHKOUT ('NPEDLN')

RETURN

END

The structure of an understanding process begins to emerge: detect a plan, such as error
checking, in the code and extract it, leaving a smaller and more coherent residue for further
analysis; document the extracted plan independently; and note the ways in which it interacts
with the rest of the code.

We can apply this approach furtherneebLrs residual code in Figure 3VPEDLNhas a
primary goal of computing the nearest point on an ellipsoid to a specified line. It also has
a related goal of ensuring that the computations involved have stable numerical behavior;
that is, that the computations are accurate in the presence of a wide range of numerical
inputs. A standard trick in numerical programming for achieving stability is to scale the
data involved in a computation, perform the computation, and then unscale the results. The
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SUBROUTINE NPEDLN (A, B, C, LINEPT, LINEDR,
PNEAR, DIST)
c
CALL UNORM ( LINEDR, UDIR, MAG )
SCALE = MAX ( DABS(A), DABS(B), DABS(C) )

SCLA = A/SCALE
SCLB = B/SCALE
SCLC = C/SCALE

c
SCLPT(1) = LINEPT(1) / SCALE

SCLPT(2) = LINEPT(2) / SCALE
SCLPT(3) = LINEPT(3)/ SCALE
c

CALL VMINUS (UDIR, OPPDIR )

CALL SURFPT (SCLPT, UDIR, SCLA, SCLB,
SCLC, PT(1,1), FOUND(1))

CALL SURFPT (SCLPT, OPPDIR, SCLA,
SCLB, SCLC, PT(1,2), FOUND(2))

NORMAL(1) = UDIR(1) / SCLA**2
NORMAL(2) = UDIR(2) / SCLB**2
NORMAL(3) = UDIR(3) / SCLC*2
CALL NVC2PL ( NORMAL, 0.D0, CANDPL )
CALL INEDPL ( SCLA, SCLB, SCLC, CANDPL,

CAND, XFOUND )
CALL NVC2PL ( UDIR, 0.00, PRJPL)
CALL PJELPL ( CAND, PRJPL, PRJEL )

c
CALL VPRIP (SCLPT, PRIPL, PRIPT )
CALL NPELPT ( PRIJPT, PRJEL, PRINPT)
DIST = VDIST ( PRINPT, PRIPT )

o]
CALL VPRJIPI ( PRINPT, PRJIPL, CANDPL, PNEAR,
IFOUND )
CALL VSCL ( SCALE, PNEAR, PNEAR)
DIST = SCALE *DIST
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DO 50001 RETURN
S 1=1,2 END
IF (FOUND(I) ) THEN
DIST = 0.0D0

CALLVEQU (PT(Ll), PNEAR)
CALL VSCL ( SCALE,PNEAR, PNEAR )
RETURN
END IF
50001 CONTINUE

Figure 3. The residual code without the error handling plan.

code responsible for doing this NPEDLNisS scattered throughout the program’s text. It is
highlighted in the excerpt shown in Figure 4.

Thedelocalized nature of this “scale-unscale” plan makes it difficult to gather together
all the pieces involved for consistent maintenance. It also gets in the way of understanding
the rest of the code, since it provides distractions that must be filtered out. Letovsky and
Soloway'’s cognitive study (Letovsky and Soloway, 1986) shows the deleterious effects of
delocalization on comprehension and maintenance.

When we extract the scale-unscale code fravaDLN we are left with the smaller code
segment shown in Figure 5 that more directly expresses the program’s purpose: computing
the nearest point.

There is one further complication, however. It turns out tfrEDLNNOt only computes
the nearest point from a line to an ellipsoid, it also computes the shortest distance between
the line and the ellipsoid. This additional outpnigT) is convenient to construct because it
can make use of intermediate results obtained while computing the primary ceNpaty(
This is illustrated in Figure 6. (The computation@fST usingVDIST is actually the last
computation performed by the subroutiNEELPT, which NPEDLNcalls; we have pulled
this computation out oiPELPTfor clarity of presentation.)

Note that an alternative way to structuseICELIB would be to have separate routines
for computing the nearest point and the distance. The two routines would each be more
coherent, but the common intermediate computations would have to be repeated, both in
the code and at runtime.

The “pure” nearest point computation is shown in Figure 7. It is now much easier to see
the primary computational purpose of this code.
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SUBROUTINE NPEDLN (A, B, C, LINEPT, LINEDR,
PNEAR, DIST)
c
CALL UNORM ( LINEDR, UDIR, MAG )
SCALE = MAX ( DABS(A), DABS(B), DABS(C))
SCLA = A/SCALE
SCLB = B/SCALE
SCLC = C/SCALE
c
SCLPT(1) = LINEPT(L)/ SCALE
SCLPT(2) = LINEPT(2)/ SCALE
SCLPT(3) = LINEPT(3)/ SCALE
c
CALL VMINUS (UDIR, OPPDIR)
CALL SURFPT (SCLPT, UDIR, SCLA, SCLB,
SCLC, PT(1,1), FOUND(1))
CALL SURFPT (SCLPT, OPPDIR, SCLA,
SCLB, SCLC, PT(1,2), FOUND(2))
DO 50001
C1=1,2
IF ( FOUND(l) ) THEN
DIST = 0.0D0
CALLVEQU (PT(L), PNEAR)
CALLVSCL (SCALE,PNEAR, PNEAR )
RETURN
END IF
50001 CONTINUE

Figure 4. Code with scale-unscale plan highlighted.

SUBROUTINE NPEDLN (A, B, C, LINEPT, LINEDR,
PNEAR, DIST)

C
CALL UNORM ( LINEDR, UDIR, MAG )

CALL VMINUS (UDIR, OPPDIR )
CALL SURFPT (SCLPT, UDIR, SCLA, SCLB,
SCLC, PT(1,1), FOUND(1))
CALL SURFPT (SCLPT, OPPDIR, SCLA,
SCLB, SCLC, PT(1,2), FOUND(2))
DO 50001
=12
IF (FOUND(I) ) THEN
DIST = 0.0D0
CALL VEQU (PT(1,l), PNEAR)
RETURN
END IF
50001 CONTINUE

RUGABER, STIREWALT, AND WILLS

NORMAL(L) = UDIR(L)/ SCLA*2
NORMAL(2) = UDIR(2) / SCLB*?2
NORMAL(3) = UDIR(3)/ SCLC**2
CALL NVC2PL ( NORMAL, 0.D0, CANDPL )
CALL INEDPL ( SCLA, SCLB, SCLC, CANDPL,
CAND, XFOUND )
CALL NVC2PL (UDIR, 0.00, PRJIPL)
CALL PJELPL ( CAND, PRJPL, PRJEL)
c
CALLVPRIP (SCLPT, PRIPL, PRIPT )
CALL NPELPT ( PRIJPT, PRJEL, PRINPT)
DIST = VDIST ( PRINPT, PRIPT)
c
CALL VPRIPI ( PRINPT, PRIPL, CANDPL, PNEAR,
IFOUND )
CALL VSCL ( SCALE, PNEAR, PNEAR)
DIST = SCALE*DIST
RETURN
END

NORMAL(1) = UDIR(1) / SCLA**2
NORMAL(2) = UDIR(2) / SCLB**2
NORMAL(3) = UDIR(3) / SCLC**2
CALL NVC2PL ( NORMAL, 0.D0, CANDPL )
CALL INEDPL ( SCLA, SCLB, SCLC, CANDPL,
CAND, XFOUND )
CALL NVC2PL (UDIR, 0.D0, PRJPL)
CALL PJELPL ( CAND, PRJPL, PRJEL)
c
CALL VPRIP (SCLPT, PRIPL, PRIPT )
CALL NPELPT ( PRIPT, PRJEL, PRINPT)
DIST = VDIST ( PRINPT, PRJPT )
c
CALL VPRJIPI ( PRINPT, PRIPL, CANDPL, PNEAR,
IFOUND )
RETURN
END

Figure 5. The residual code without the scale-unscale plan.
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SUBROUTINE NPEDLN (A, B, C, LINEPT, LINEDR,
PNEAR, DIST)
C
CALL UNORM ( LINEDR, UDIR, MAG )
C

CALL VMINUS (UDIR, OPPDIR )
CALL SURFPT (SCLPT, UDIR, SCLA, SCLB,
SCLC, PT(1,1), FOUND(1))
CALL SURFPT (SCLPT, OPPDIR, SCLA,
SCLB, SCLC, PT(1,2), FOUND(2))
DO 50001
=12
IF (FOUND(l) ) THEN
DIST = 0.0D0
CALL VEQU (PT(L,l), PNEAR)
RETURN
END IF
50001 CONTINUE

Figure 6. Code with distance plan highlighted.

SUBROUTINE NPEDLN (A, B, C, LINEPT, LINEDR,
PNEAR )

C
CALL UNORM ( LINEDR, UDIR, MAG )
C

CALL VMINUS (UDIR, OPPDIR )
CALL SURFPT (SCLPT, UDIR, SCLA, SCLB,
SCLC, PT(1,1), FOUND(1))
CALL SURFPT (SCLPT, OPPDIR, SCLA,
SCLB, SCLC, PT(1,2), FOUND(2))
DO 50001
=12
IF ( FOUND(l) ) THEN
CALL VEQU' (PT(1,l), PNEAR)
RETURN
END IF
50001 CONTINUE

NORMAL(1) = UDIR(1)/ SCLA**2
NORMAL(2) = UDIR(2) / SCLB**2
NORMAL(3) = UDIR(3) / SCLC*2
CALL NVC2PL ( NORMAL, 0.D0, CANDPL )
CALL INEDPL (' SCLA, SCLB, SCLC, CANDPL,
CAND, XFOUND )

CALL NVC2PL (UDIR, 0.D0, PRJPL)
CALL PJELPL ( CAND, PRIPL, PRJEL )

c
CALL VPRJIP (SCLPT, PRIPL, PRIPT )
CALL NPELPT (PRJPT, PRJEL, PRINPT)
DIST = VDIST ( PRINPT, PRIPT )

C
CALL VPRJPI ( PRINPT, PRJIPL, CANDPL, PNEAR,

IFOUND )
RETURN
END
c
NORMAL(1) = UDIR(1) / SCLA**2

NORMAL(2) = UDIR(2) / SCLB**2
NORMAL(3) = UDIR(3)/ SCLC*2
CALL NVC2PL ( NORMAL, 0.D0, CANDPL )
CALL INEDPL ( SCLA, SCLB, SCLC, CANDPL,
CAND, XFOUND )

CALL NVC2PL ( UDIR, 0.D0, PRJPL)
CALL PJELPL ( CAND, PRJPL, PRJEL)

¢}
CALL VPRIP (SCLPT, PRJPL, PRIPT )
CALL NPELPT ( PRJPT, PRJEL, PRINPT)

c
CALL VPRJIPI ( PRINPT, PRJIPL, CANDPL, PNEAR,
IFOUND )
RETURN
END

Figure 7. The residual code without the distance plan.
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The production version o PEDLNcontains several interleaved plans. Intermediate For-
tran computations are shared by the nearest point and distance plans. A delocalized scaling
plan is used to improve numerical stability, and an independent error handling plan is used
to deal with unacceptable input. Knowledge of the existence of the several plans, how they
are related, and why they were interleaved is required for a deep understanipigrnfN

1.2. Contributions

In this paper, we present a characterization of interleaving, incorporating three aspects
that make interleaved code difficult to understand: independence, delocalization, and re-
source sharing. We have distilled this characterization from an empirical examination of
existing software — primarilgPICELIB . Secondary sources of existing software which we
also examined are a Cobol database report writing system from the US Army and a pro-
gram for finding the roots of functions, presented and analyzed in (Basili and Mills, 1982)
and (Rugaber et al., 1990). We relate our characterization of interleaving to existing con-
cepts in the literature, such as delocalized plans (Letovsky and Soloway, 1986), coupling
(Yourdon and Constantine, 1979), and redistribution of intermediate results (Hall, 1990,
Hall, 1991).

We then describe the context in which we are exploring and applying these ideas. Our
driving program comprehension problem is to elaborate and validate existing partial spec-
ifications of theJpL library routines to facilitate the automation of specification-driven
generation of programs using these routines. We have developed analysis tools, based on
the Software Refinery, to detect interleaving. We describe the analyses that we have for-
mulated to detect specific classes of interleaving that are particularly useful in elaborating
specifications. We then discuss open issues concerning requirements on software and plan
representations that detection imposes, the role of application knowledge in addressing the
interleaving problem, scaling up the scope of interleaving, and the feasibility of building
tools to assist interleaving detection and extraction. We conclude with a description of how
related research in clielfecognition as well as non-recognition techniques can play a role
in addressing the interleaving problem.

2. Interleaving

Programmers solve problems by breaking them into pieces. Pieces are programming lan-
guage implementations of plans, and it is common for multiple plans to occur in a single
code segment. We use the teimterleavingto denote this merging (Rugaber et al., 1995).

Interleavingexpresses the merging of two or more distinct plans within some con-
tiguous textual area of a program. Interleaving can be characterized tglttal-
izationof the code for the individual plans involved, thlearingof some resource,
and the implementation of multipléndependenplans in the program’s overall
purpose.
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Interleaving may arise for several reasons. It may be intentionally introduced to improve
program efficiency. For example, it may be more efficient to compute two related values in
one place than to do so separately. Intentional interleaving may also be performed to deal
with non-functional requirements, such as numerical stability, thatimpose global constraints
which are satisfied by diffuse computational structures. Interleaving may also creep into
a program unintentionally, as a result of inadequate software maintenance, such as adding
a feature locally to an existing routine rather than undertaking a thorough redesign. Or
interleaving may arise as a natural by-product of expressing separate but related plans in
a linear, textual medium. For example, accessors and constructors for manipulating data
structures are typically interleaved throughout programs written in traditional programming
languages due to their procedural, rather than object-oriented structure. Interleaving cannot
always be avoided (e.g., due to limitations of the available programming language) and may
be desirable (e.g., for economy and avoiding duplication which can lead to inconsistent
maintenance). Regardless of why interleaving is introduced, it complicates understanding
a program. This makes it difficult to perform tasks such as extracting reusable components,
localizing the effects of maintenance changes, and migrating to object-oriented languages.

There are several reasons interleaving is a source of difficulties. The first has to do with
delocalization. Because two or more design purposes are implemented in a single segment
of code, the individual code fragments responsible for each purpose are more spread out
than they would be if they were segregated in their own code segments. Another reason in-
terleaving presents a problem is that when it is the result of poorly thought out maintenance
activities such as “patches” and “quick fixes”, the original, highly coherent structure of the
system may degrade. Finally, the rationale behind the decision to intentionally introduce
interleaving is often not explicitly recorded in the program. For example, although inter-
leaving is often introduced for purposes of optimization, expressing intricate optimizations
in a clean and well-documented fashion is not typically done. For all of these reasons, our
ability to comprehend code containing interleaved fragments is compromised.

Our goal is not to completely eliminate interleaving from programs, since that is not
always desirable or possible to do at the level of source text. Rather, it is to find ways of
detecting interleaving and representing the interleaved plans at a level of abstraction that
makes the individual plans and their interrelationships clear.

We now examine each of the characteristics of interleaving — delocalization, sharing,
independence — in more detail.

2.1. Delocalization

Delocalizationis one of the key characteristics of interleaving: one or more parts of a
plan are spatially separated from other parts by code from other plans with which they are
interleaved.
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SUBROUTINE NPEDLN(A, B, C, LINEPT, LINEDR,
PNEAR, DIST)

CALL UNORM ( LINEDR, UDIR, MAG )
[error checks]
SCALE = MAX ( DABS(A), DABS(B), DABS(C) )
SCLA A/ SCALE
SCLB B/ SCALE
SCLC = C/SCALE
[error checks]

SCLPT(1) = LINEPT(1)/ SCALE

SCLPT(2) = LINEPT(2) / SCALE

SCLPT(3) = LINEPT(3)/ SCALE

CALL VMINUS ( UDIR, OPPDIR))

CALL SURFPT ( SCLPT, UDIR, SCLA, SCLB,
SCLC,PT(1,1), FOUND(1))

CALL SURFPT ( SCLPT, OPPDIR,SCLA, SCLB,
SCLC, PT(1,2), FOUND(2))
[checking for intersection of the

line with the ellipsoid]
IF (FOUND(l) ) THEN
DIST = 0.0DO
CALL VSCL (SCALE, PNEAR, PNEAR)

RETURN
END IF
. [handling the non-intercept case]
CALL VSCL (SCALE, PNEAR, PNEAR)
DIST = SCALE *DIST

RETURN
END

Figure 8. Portions of thenxpEDLNFoOrtran program. Shaded regions highlight the lines of code responsible for
scaling and unscaling.
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The “scale-unscale” pattern found NPEDLNiS a simple example of a more general de-
localized plan that we refer to ageformulation wrapperwhich is frequently interleaved
with computations irsPICELIB . Reformulation wrappers transform one problem into an-
other that is simpler to solve and then transfer the solution back to the original situation.
Other examples of reformulation wrapperssifICELIB are reducing a three-dimensional
geometry problem to a two-dimensional one and mapping an ellipsoid to the unit sphere to
make it easier to solve intersection problems.

Delocalization may occur for a variety of reasons. One is that there may be an inherently
non-local relationship between the components of the plan, as is the case with reformula-
tion wrappers, which makes the spatial separation necessary. Another reason is that the
intermediate results of part of a plan may be shared with another plan, causing the plans to
overlap and their steps to be shuffled together; the steps of one plan separate those of the
other. For example, in Figure 8, part of the unscale plan (computing the scaling factor) is
separated from the rest of the plan (multiplying by the scaling factor) in all unscalings of
the results§IST andPNEAR. This allows the scaling factor to be computed once and the
result reused in all scalings of the inputss, andc and in unscaling the results.

Realizing that a reformulation wrapper or some other delocalized plan is interleaved
with a particular computation can help prevent comprehension failures during maintenance
(Letovsky and Soloway, 1986). It can also help detect when the delocalized plan is incom-
plete, as it was in an earlier version of our example subroutine whose modification history
includes the following correction:

C- SPICELIB Version 1.2.0, 25-NOV-1992 (NJB)
C Bug fix: in the intercept case, PNEAR is now
C properly re-scaled prior to output. Formerly,

C it was returned without having been re-scaled.

2.2. Resource Sharing

The sharing of some resource is characteristic of interleaving. When interleaving is intro-
duced into a program, there is normally some implicit relationship between the interleaved
plans, motivating the designer to choose to interleave them. An example of this within
NPEDLNis shown in Figure 9. The shaded portions of the code showsteredbetween
the two computations foPNEARandDIST. In this case, the common resources shared by
the interleaved plans are intermediate data computations. The implementations for com-
puting the nearest point and the shortest distance overlap in that a single structural element
contributes to multiple goals.

The sharing of the results of some subcomputation in the implementation of two distinct
higher level operations is termeedistribution of intermediate resultsy Hall (Hall, 1990,
Hall, 1991). More specifically, redistribution is a class of function sharing optimizations
which are implemented simply by tapping into the dataflow from some value producer and
feeding it to an additional target consumer, introducing fanout into the dataflow. Redistri-
bution covers a wide range of common types of function sharing optimizations, including
common subexpression elimination and generalized loop fusion. Hall developed an au-
tomated technique for redistributing results for use in optimizing code generated from
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SUBROUTINE NPEDLN (A, B, C, LINEPT,
LINEDR, PNEAR, DIST)

[First 100 lines of NPEDLN]

CALL NPELPT ( PRJPT, PRJEL, PRINPT)
DIST = VDIST ( PRINPT, PRIPT) \

CALL VPRJPI(PRINPT,PRJPL,CANDPL,PNEAR,
IFOUND )

IF (.NOT. IFOUND ) THEN

[error handling]

END IF
_ CALL VSCL (SCALE, PNEAR, PNEAR)

DIST = SCALE *DIST ‘

CALL CHKOUT ('NPEDLN'")
RETURN
END

BN

Figure 9. Portions of\PeDLN highlighting two overlapping computations.

general-purpose reusable software components. Redistribution of results is a form of inter-
leaving in which the resources shared da¢avalues.

The commonality between interleaved plans might be in the form of other shared resources
besides data values, for example control structures, lexical module structures, and names.
Often when interleaving is unintentional, the resource shared is code space: the code
statements of two plans are interleaved because they must be expressed in linear text.
Typically, intentional interleaving involves sharing higher level resources.

Control coupling. Control conditions may be redistributed just as data values are. The
use of control flags allows control conditions to be determined once but used to affect
execution at more than one location in the programNREDLN for example SURFPTIS
called to compute the intersection of the line with the ellipsoid. This routine returns a
control flag,FouNDindicating whether or not the intersection exists. This flag is then used
outside ofsurFPTto control whether the intercept or non-intercept case is to be handled, as
is shown in Figure 10.

The use of control flags is a special formaaintrol coupling “any connection between
two modules that communicates elements of control (Yourdon and Constantine, 1979),”
typically in the form of function codes, flags, or switches (Myers, 1975). This sharing of
control information between two modules increases the complexity of the code, complicat-
ing comprehension and maintenance.

Content coupling. Another form of resource sharing occurs when the lexical structure of
a module is shared among several related functional components. For example, the entire
contents of a module may be lexically included in another. This sometimes occurs when
a programmer wants to take advantage of a powerful intraprocedural optimizer limited to
improving the code in a single routine. Another example occurs when a programmer uses
ENTRYStatements to partially overlap the contents of several routines so that they may share
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CALL SURFPT ( SCLPT, UDIR, SCLA, SCLB,
. SCLC, PT(1,1), FOUND(1) )
CALL SURFPT ( SCLPT, OPPDIR, SCLA, SCLB,
. SCLC, PT(1,2), FOUND(2) )
DO 50001
=12
IF ( FOUND(l) ) THEN
[handling the intercept case]

RETURN
END IF
50001 CONTINUE
C Getting here means the line doesn't
C intersect the ellipsoid.
[handling the non-intercept case]
RETURN

END

Figure 10.Fragment of subroutine showing control coupling

access to some state variables. This is sometimes done in a language, such as Fortran, that
does not contain an encapsulation mechanism like packages or objects.

These two practices are examples of a phenomenon cadleint coupling Yourdon
and Constantine, 1979) in which — “some or all of the contents of one module are included
in the contents of another” — and which often manifests itself in the form of a multiple-
entry module. Content coupling makes it difficult to independently modify or maintain the
individual functions.

Name Sharing. A simple form of sharing is the use of the same variable name for two
different purposes. This can lead to incorrect assumptions about the relationship between
subcomputations within a program.

In general, the difficulty that resource sharing introduces is that it causes ambiguity in
interpreting the purpose of program pieces. This can lead to incorrect assumptions about
what effect changes will have, since the maintainer might be focusing on only one of the
actual uses of the resource (variable, value, control flag, data structure slot, etc.).

2.3. Independence

While interleaving is introduced to take advantage of commonalities, it is also true that
the interleaved plans each have a distinct purpose. Because understanding relates program
goals to program code, having two goals realized in one section of code can be confusing.
There are several ways for dealing with this problem. One way would be to make two
copies of the code segment, each responsible for one of the goals, and both duplicating
any common code. In thePEDLNexample, a separate routine could be provided that is
responsible for computirysT. Although this may make understanding each of the routines
somewhat simpler, there are costs due to the extra code and the implicit need, often forgotten,
to update both versions of the common code whenever it needs to be fixed. A variant of
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this approach is to place the common code in a separate routine, replacing it in each of
the two copies with a call to the new routine. Tiéstoringapproach works well when
the common code is contiguous, but quickly becomes unworkable if the common code is
interrupted by the plan specific code.

The bottom line is that this style of intentional interleaving confronts the programmer with
a tradeoff between efficiency and maintainability/understandability. Ironically, making the
efficiency choice may hinder efforts to make the code more efficient and reusable in the
long run, such as parallelizing or “objectifying” the code (converting it to an object-oriented
style).

3. Case Study

In order to better understand interleaving, we have undertaken a case study of production
library software. The library, callesPICELIB , consists of approximately 600 mathematical
programs, written in Fortran by programmers at the Jet Propulsion Laboratory, for analyzing
data sent back from space missions. The software performs calculations related to solar
system geometry, such as coordinate frame conversions, intersections of rays, ellipses,
planes, and ellipsoids, and light-time calculatiorBeDLNcomes from this library.

We were introduced t®PICELIB by researchers at NASA Ames, who have devel-
oped a component-based software synthesis system called Amphion (Lowry et al., 1994,
Lowry et al., 1994, Stickel et al., 1994). Amphion automatically constructs programs that
compose routines drawn frog®ICELIB . It does this by making use ofdomain theorthat
includes formal specifications of the library routines, connecting them to the abstract con-
cepts of solar system geometry. The domain theory is encoded in a structured representation,
expressed as axioms in first-order logic with equality. A space scientist using Amphion can
schematically specify the geometry of a problem through a graphical user interface, and
Amphion automatically generates Fortran programs tosratlELIB routines to solve the
described problem. Amphion is able to do this by proving a theorem about the solvability
of the problem and, as a side effect, generating the appropriate calls. This is shown in the
bottom half of Figure 11. Amphion has been installed at JPL and used by space scientists to
successfully generate over one hundred programs to solve solar system kinematics problems.
The programs consist of dozens of subroutine calls and are typically synthesized in under
three minutes of CPU time using a Sun Sparc 2 (Lowry et al., 1994, Lowry et al., 1994).

Amphion’s success depends on how accurate, consistent, and complete its domain theory
is. An essential program understanding task is to validate the domain theory by checking
it against thesPICELIB routines and extending it when incompletenesses are found. To do
this, we need to be able to pull apart interleaved strands. For example, one incompleteness
in Amphion’s domain theory is that it does not fully cover the functionality of the routines
in SPICELIB . Some routines compute more than one result. For exampimLNcomputes
the nearest point on an ellipsoid to a line as well as the shortest distance between that
point and the ellipsoid. However, the domain theory does not describe both of these
values. In the case ofPEDLN only the nearest point computation is modelled, not the
shortest distance. In these routines, it is often the case that the code responsible for the
secondary functionalities is interleaved with the code for the primary function covered by
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Figure 11. Applying interleaving detection to component-based reuse.

Amphion’s domain theory. Uncovering the secondary functionality requires unraveling and
understanding two interleaved computations.

Another way in which Amphion’s current domain theory is incomplete is that it does
not express preconditions on the use of the library routines; for example, that a line given
as input to a routine must not be the zero vector or that an ellipsoid’s semi-axes must
be large enough to be scalable. It is difficult to detect the code responsible for checking
these preconditions because it is usually tightly interleaved with the code for the primary
computation in order to take advantage of intermediate results computed for the primary
computation.

In collaboration with NASA Ames researchers, we explored ways in which Amphion’s
domain theory is incomplete, and we built program comprehension techniques to extend
it. As the top half of Figure 11 shows, we developed mechanisms for detecting particular
classes of interleaving, with the aim of extending the incomplete domain theory. In the
process, we also performed analyses to gather empirical information about how much of
SPICELIB is covered by the domain theory.

We have builtinterleaving detection mechanisms and empirical analyzers using a commer-
cial tool called the Software Refinery (Reasoning Systems Inc.). This is a comprehensive
tool suite including language-specific parsers and browsers for Fortran, C, Ada, and Cobol,
language extension mechanisms for building analyzers for new languages, and a user inter-
face construction tool for displaying the results of analyses. It maintains an object-oriented
repository for holding the results of its analyses, such as abstract syntax trees and symbol
tables. It provides a powerful wide-spectrum language, called Refine (Smith et al., 1985),
which supports pattern matching and querying the repository. Using the Software Refinery
allows us to leverage a commercially available tool as well as to evaluate the strengths and
limitations of its approach to program analysis, which we discuss in Section 4.4.
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3.1. Domain Theory Elaboration in Synthesis and Analysis

Our motivations for validating and extending a partial domain theory of existing software
come both from the synthesis and from the analysis perspectives. The primary motivations
for doing this from thesynthesiperspective are to make component retrieval more accurate
in support of reuse, to assist in updating and growing the domain theory as new software
components are added, and to improve the software synthesized.

From the softwarenalysisperspective, the refinement and elaboration of the domain
theory, based onwhatis discovered inthe code, is a primary activity, driving the generation of
hypotheses and informing future analyses. The process of understanding software involves
two parallel knowledge acquisition activities (Brooks, 1983, Ornburn and Rugaber, 1992,
Soloway and Ehrlich, 1984):

1. using domain knowledge to understand the code — knowledge about the application sets
up expectations about how abstract concepts are typically manifested in concrete code
implementations;

2. using knowledge of the code to understand the domain —what is discovered in the code
is used to build up a description of various aspects of the application and to help answer
questions about why certain code structures exist and what is their purpose with respect
to the application.

We are studying interleaving in the context of performing these activities, gmegLIB
and an incomplete theory of its application domain. We are targeting our detection of
interleaving toward elaborating the existing domain theory. We are also looking for ways
in which the current knowledge in the domain theory can guide detection and ultimately
comprehension.

3.2. Extracting Preconditions

Using the Software Refinery, we automated a number of program analyses, one of which
is the detection of subroutine parameter precondition checks. A precondition is a Boolean
guard controlling execution of a routine. Preconditions normally occur early in the code of

a routine before a significant commitment (in terms of execution time and state changes that
must be reversed) is made to execute the routine. Because precondition checks are often
interspersed with the computation of intermediate results, they tend to delocalize the plans
that perform the primary computational work. Moreover precondition computations are
usually part of a larger plan that detects exceptional, possibly erroneous conditions in the
state of a running program, and then takes alternative action when these conditions arise,
such as returning with an error code, signaling, or invoking error handlers. In some instances
the majority of the lines of code in a routine are there to deal with the preconditions and
resulting exception handling rather than to actually implement the base plan of the routine.

We found many examples of precondition checks on input parameters in our empirical
analysis of thesPICELIB . One such check occurs in the subroutiugrFpTand is shown in
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C$Procedure SURFPT ( Surface point on an ellipsoid )
SUBROUTINE SURFPT ( POSITN, U, A, B, C, POINT, FOUND )
DOUBLE PRECISION U (3)

...declarations...
C Check the input vector to see if its the zero vector. If it is
C signal an error and return.

IF ( ( U@) .EQ. 0.0D0 ) .AND.
( U(2) .EQ. 0.0DO0 ) .AND.
( U(3) .EQ. 0.0D0 ) ) THEN
CALL SETMSG ( 'SURFPT: The input vector is the zero vector.’ )
CALL SIGERR ( 'SPICE(ZEROVECTORY)' )
CALL CHKOUT ( 'SURFPT' )
RETURN
END IF

Figure 12. A fragment of the subroutinsurrpPTin spiceLiB . This fragment shows a precondition check which
invokes an exception if all of the elements of tharray are 0.

Figure 12. surrPTfinds the intersectionPQINT) of a ray (represented by a poiPOSITN
and a direction vectar) with an ellipsoid (represented as three semi-axes lengthsand
), if such an intersection exists (indicatedryuni. One of the preconditions checked by
SURFPTIS that the direction vectaris not the zero-vector.

Parameter precondition checks make explicit the assumptions a subroutine places on its
inputs. The process of understanding a subroutine can be facilitated by detecting its precon-
dition checks and using the information they encode to elaborate a high-level specification
of the subroutine. We have created a tool that detects parameter precondition checks and
extracts the preconditions into a documentation form suitable for expression as a partial
specification. The specifications can then be compared against the Amphion domain model.

Precondition checks are particularly difficult to understand when they are sprinkled
throughout the code of a subroutine as opposed to being concentrated at the beginning.
However, we discovered that, though interleaved, these checks could be heuristically iden-
tified in SPICELIB by searching forF statements whose predicates are unmodified input
parameters (or simple dataflow dependents of them) and whose bodies invoke exception
handlers. The logical negation of each of the predicates forms a conjunctin the precondition
of the subroutine. The analysis that decides whether oFnstatements test only unmod-
ified input parameters is specific to the Fortran language; but the analysis that decides if a
code fragment is an exception plan depends on the fact that exceptions are dealt with in a
stylized and stereotypical mannerspICELIB . The implication is that the Fortran specific
portion is not likely to need changing when we apply the tool to a new Fortran application;
whereas thePICELIB specific portion will certainly need to change. With this in mind, we
chose a tool architecture that allows flexibility in keeping these different types of pattern
knowledge separate and independently adaptable.
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Detecting Exception Handlers.In general, we need application specific knowledge about
usage patterns in order to discover exception handlers. For example, the developers of
sPICELIB followed a strict discipline of exception propagation by registering an exception
upon detection using a subroutisssERRand then exiting the executing subroutine using
aRETURNstatement. Hence, a call focGERRtogether with &RETURNNdicates a clich for
handling an exception iBPICELIB . In some other application, the form of this clechill be
different. Itis, therefore, necessary to design the recognition component of our architecture
around this need to specialize the tool with knowledge about the system being analyzed.

The Software Refinery provides excellent support for this design principle through the
use of therule construct and a tree-walker that applies these rules to an abstract syntax
tree (AST). Rules declaratively specify state changes by listing the conditions before and
after the change without specifying how the change is implemented. This is useful for in-
cludingspPICELIB specific pattern knowledge because it allows the independent, declarative
expression of the different facets of the pattern.

We recognize application specific exception handlers using two rules that search the AST
for a call tosiGERRfollowed by arReTURNstatement. These rules and the Refine code that
applies them are presented in detail in (Rugaber et al., 1995).

Detecting Guards. Discoveringguards which arelF statements that depend only upon
input parameters, involves keeping track of whether or not these parameters have been
modified. If they have been modified before the check, then the check probably is not a
precondition check on inputs. In Fortran, a varialllean be modified by:

1. appearing on the left hand side of an assignment statement,

2. being passed into a subroutine which then modifies the formal parameter bakind to
by the call,

3. being implicitly passed into another subroutine ibca/molllock and modified in this
other subroutine, or

4. being explicitly aliased by apQUIVALENCEstatement to another variable which is then
modified.

Currently our analysis does not detect modification thrazmhimosr EQUIVALENCEbecause

none of the code iSPICELIB uses these features with formal parameters. We track modi-
fications to input parameters by using an approximate dataflow algorithm that propagates a
set of unmodified variables through the sequence of statements in the subroutine. At each
statement, if a variablé in the set could be modified by the execution of the statement,
thenX is removed from the set. After the propagation, we can easily check whether or not
aniF statementis a guard.

Results. The result of this analysis is a table of preconditions associated with each subrou-
tine. Since we are targeting partial specification elaboration for Amphion, we chose to make
the tool output the preconditions ifTiEX form. Figure 13 gives examples of preconditions
extracted for a fevgPICELIB subroutines. Our tool generated th&dX source included in
Figure 13 without change.
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RECGEO —(F > 1) A —~(RE < 0.0D0)

REMSUB —((LEFT > RIGHT)V (RIGHT < 1)V (LEFT < 1)V (RIGHT > LEN(IN)) Vv
(LEFT > LEN(IN)))

SURFPT —((U(1) = 0.0D0) A (U(2) = 0.0D0) A (U(3) = 0.0D0))

XPOSBL —((MOD(NCOL, BSIZE) # 0) V (MOD(NROW, BSIZE) # 0)) A ~(NCOL < 1) A
~(NROW < 1) A —~(BSIZE < 1)

Figure 13.Preconditions extracted for some of the subroutinesioeLis .

Taken literally, the precondition f@urFpPT for example, states that one of the first three
elements of they array parameter must be non-zero. In terms of solar system geometry,
Uis seen as a vector, so the more abstract precondition can be stated as “U is not the zero
vector.” Extracting the precondition into the literal representation is the first step to being
able to express the precondition in the more abstract form.

The other preconditions listed in Figure 13, stated in their abstract form, are the following.
The subroutine&RECGE@onverts the rectangular coordinates of a paitTAMO geodetic
coordinates, with respect to a given reference spheroid whose equatorial ratiussisig
a flattening coefficiertt. Its precondition is that the radius is greater than 0 and the flattening
coefficientis less than 1. The subroutkEMsusemoves the substrinQerFT:RIGHT) from
a character stringy . It requires that the positions of the first charactert and the last
characteRIGHT to be removed are in the range 1 to the length of the string and that the
position of the first character is less than the position of the last. Finally, the subroutine
XPOSBLtransposes the square blocks within a magWaT Its preconditions are that the
block sizessize must evenly divide both the number of rowsovin BMATand the number
of columnsncoLand that the block size, number of rows, and number of columns are all at
least 1.

3.3. Finding Interleaving Candidates

There are several other analyses that we have investigated using heuristic techniques for
finding interleaving candidates.
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3.3.1. Routines with Multiple Outputs

One heuristic for finding instances of interleaving is to determine which subroutines compute
more than one output. When this occurs, the subroutine is returning either the results of
multiple distinct computations or a result whose type cannot be directly expressed in the
Fortran type system (e.g., as a data aggregate). In the former case, the subroutine is realized
as the interleaving of multiple distinct plans, as is the case MRDLNs computation of

both the nearest point and the shortest distance.

Inthe latter case, the subroutine may be implementing only a single plan, buta maintainer’s
conceptual categorization of the subroutine is still obscured by the appearance of some
number of seemingly distinct outputs. A good example of this case occurss$ritte 1B
subroutinesurRFPT which conceptually returns the intersection of a vector with the surface
of an ellipsoid. However, it is possible to giv®RFPTa vector and an ellipsoid that
do not intersect. In such a situation the output paranreenT will be undefined, but the
Fortran type system cannot express the typmuBLE PRECISION/ Undefined The original
programmer was forced to simulate a variable of this type using two variawes; and
FOUNDpadopting the convention that wheauNas false, the return value isindefinegdand
whenFouNOs true, the return value iSOINT.

Clearly subroutines with multiple outputs complicate program understanding. We built a
tool that determines the multiple output subroutines in a library by analyzing the direction
of dataflow in parameters of functions and subroutines. A parameter’s direction is either:
in if the parameter is only read in the subroutiaet if the parameter is only written in the
subroutine, oin-out if the parameter is both read and written in the subroutine. Multiple
output subroutines will have more than one parameter with direotibr in-out.

Our tool bases its analysis on the structure chart (call graph) objects that the Software
Refinery creates. The nodes of these structure charts are annotated with parameter direction
information. The resulting analysis showed that 25 percent of the subroutiaesiLIB
had multiple output parameters. We were thus able to focus our work on these routines
first, as they are likely to involve interleaving.

In addition, we performed an empirical analysis to determine, for those routines covered
by the Amphion domain model (35 percent of the library), which ones have multiple output
parameters, some of which are not covered by the domain model. We refer to outputs
that are not mapped to anything in the domain modeless] end dataflowimilar to an
interprocedural version afead cod€Aho et al., 1986)). Since the programs that Amphion
creates can never make use of these return values, they have not been associated with any
meaning in the domain theory. For exampleeDLRs distance output{sT) is a dead end
dataflow as far as the domain theory is concerned. Dead end dataflows imply interleaving
in the subroutine and/or an incompleteness in the domain theory. Our analysis revealed that
of the subroutines covered by the domain theory, 30 percent have some output parameters
that are dead end dataflows. These are good focal points for detecting interleaved plans that
might be relevant to extending the domain theory.
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3.3.2. Control Coupling

Another heuristic for detecting potential interleaving finds candidate routines that may be
involved incontrol coupling Control coupling is often implemented by using a subroutine
formal parameter as a control flag. So, we focus on calls to library routines that supply a
constant as a parameter to other routines, as opposed to a variable. The constant parameter
may be a flag that is being used to choose among a set of possible computations to perform.
The heuristic strategy we use for detecting control coupling first computes a set of candidate
routines that are invoked with a constant parameter at every call-site in the library or in code
generated from the Amphion domain theory. Each member of this set is then analyzed
to see if the formal parameter associated with the constant actual parameter is used to
conditionally execute disjoint sections of code. Our analysis shows that 19 percent of the
routines inSPICELIB are of this form.

3.3.3. Reformulation Wrappers

A third heuristic for locating interleaving is to ask: Which pairs of routinesoccuf? Two
routines co-occur if they are always called by the same routines, they are executed under the
same conditions, and there is a flow of computed data from one to the other. We would like
to detect co-occurrence pairs because they are likely to fefonmulation wrappers Of

course, in general we would like to consider any code fragments as potential pairs, not just
library routines. Once co-occurrence pairs are detected, they must be further checked to see
whether they are inverses of each other. For example, in the “scale-unscale” reformulation
wrapper, the operations that divide and multiply by the scaling factor co-occur and invert
the effects of each other; the inputs are scaled (divided) and the results of the wrapped
computation are later unscaled (multiplied). Through empirical investigatierIoELIB ,

we have discovered co-occurrence pairs that form reformulation wrappers and are building
tools to perform this analysis automatically.

4. Open Issues and Future Work

We are convinced thatinterleaving seriously complicates understanding computer programs.
But recognizing a problem is different from knowing how to fix it. Questions arise as to
what form of representation is appropriate to hold the extracted information, how knowledge
of the application domain can be used to detect plans, the extent to which the concept of
interleaving scales up, and how powerful tools need to be to detect and extract interleaved
components.

4.1. Representation

Our strategy for building program analysis tools is to formulapeagram representation
whose structural properties correspond to interesting program properties. A programming
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style tool, for example, uses a control flow graph that explicitly represents transfer of execu-
tion flow in programs. Irreducible control flow graphs signify the use of unstructemedo
statements. The style tool uses this structural property to report violations of structured
programming style. Since we want to build tools for interleaving detection we have to for-
mulate a representation that captures the properties of interleaving. We do this by first listing
structural properties that correspond to each of the three characteristics of interleaving and
then searching for a representation that has these structural properties.

The key characteristics of interleaving are delocalization, resource sharing, and indepen-
dence. In sequential languages like Fortran, delocalization often cannot be avoided when
two or more plans share data. The components of the plans have to be serialized with
respect to the dataflow constraints. This typically means that components of plans cluster
around the computation of the data being shared as opposed to clustering around other
components of the same plan. This total ordering is necessary due to the lack of support
for concurrency in most high level programming languages. It follows then that in order
to express a delocalized plan, a representation must impose a partial rather than a total
execution ordering on the components of plans.

The partial execution ordering requirement suggests that some form of graphical represen-
tation is appropriate. Graph representations naturally express a partial execution ordering
via implicit concurrency and explicit transfer of control and data. Since there are a number
of such representations to choose from, we narrow the possibilities by noting that:

1. independent plans must be localized as much as possible, with no explicit ordering
among them;

2. sharing must be detectable (shared resources should explicitly flow from one plan to
another); similarly if two plang;, p» both share a resource provided by a pigithen
p1 andps should appear in the graph as siblings with a common ancggtor

3. therepresentation must support multiple views of the program as the interaction of plans
at various levels of abstraction, since interleaving may occur at any level of abstraction.

An existing formalism that meets these criteria is RicRlan Calculus(Rich, 1981,
Rich, 1981, Rich and Waters, 1990). A plan in the Plan Calculus is encoded as a graphi-
cal depiction of the plan’s structural parts and the constraints (e.g., data and control flow
connections) between them. This diagrammatic notation is complemented with an axiom-
atized description of the plan that defines its formal semantics. This allows us to develop
correctness preserving transformations to extract interleaved plans. The Plan Calculus also
provides a mechanism, calleglerlays for representing correspondences and relationships
between pairs of plans (e.g., implementation and optimization relationships). This enables
the viewing of plans at multiple levels of abstraction. Overlays also support a general notion
of plan composition which takes into account resource sharing at all levels of abstraction
by allowing overlapping points of view.
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4.2. Exploiting Application Knowledge

Most of the current technology available to help understand programs addresses implemen-
tation questions; that is, it is driven by the syntactic structure of programs written in some
programming language. But the tasks that require the understanding — perfective, adaptive,
and corrective maintenance — are driven by the problem the program is solving; that is,
its application domain. For example, if a maintenance task requires extexelngNto

handle symmetric situations where more than one “nearest point” to a line exist, then the
programmer needs to figure out what to do about the distance calculation also computed by
NPEDLN Why wasDIST computed inside of the routine instead of separately? Was it only for
efficiency reasons, or might the nearest point and the distance be consigaieofaesults

by its callers? In the former case, a singlsT return value is still appropriate, in the latter,

a pair of identical values is indicated. To answer questions like these, programmers need
to know which plans pieces of code are implementing. And this sort of plan knowledge
derives from understanding the application area, not the program.

Another example fronnPEDLNconcerns reformulation wrappers. These plans are inher-
ently delocalized. In fact, they only make sense as plans at all when considered in the
context of the application: stable computations of solar system geometry. Without this
understanding, the best hope is to recognize that the code has uniformly applied a function
and its inverse in two places, without knowing why this was done and how the computations
are connected.

The underlyingissue is that any scheme for code understanding based solely on atop-down
or a bottom-up approach is inherently limited. As illustrated by the examples, a bottom-up
approach cannot hope to relate delocalized segments or disentangle interleavings without
being able to relate to the application goals. And a top-down approach cannot hope to find
where a plan is implemented without being able to understand how plan implementations
are related syntactically and via dataflows. The implication is that a coordinated strategy
is indicated, where plans generate expectations that guide program analysis and program
analysis generates related segments that need explanation.

4.3. Scaling the Concept of Interleaving

We can characterize the ways interleaving manifests itself in source code along two spec-
trums. These form a possible design space of solutions to the interleaving problem and can
help relate existing techniques that might be applicable. One spectrumssdpeof the
interleaving, which can range from intraprocedural to interprocedural to object (clusters
of procedures and data) to architectural. The other spectrum &rietural mechanism
providing the interleaving, which may be naming, control, data, or protocol. Protocols are
global constraints, such as maintaining stack discipline or synchronization mechanisms for
cooperating processes. For example, the use of control flags is a control-based mechanism
for interleaving with interprocedural scope. The common iteration construct involved in
loop fusion is another control-based mechanism, but this interleaving has intraprocedural
scope. Reformulation wrappers use a protocol mechanism, usually at the intraprocedural
level, but they can have interprocedural scope. Multiple-inheritance is an example of a
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data-centered interleaving mechanism with object scope. Interleaving at the scope of ob-
jects and architectures or involving global protocol mechanisms is not yet well understood.
Consequently, few mechanisms for detection and extraction currently exist in these areas.

4.4. Tool Support

We used the Software Refinery from Reasoning Systems in our analyses. This comprehen-
sive toolkit provides a set of language-specific browsers and analyzers, a parser generator,
a user interface builder, and an object-oriented repository for holding the results of anal-
yses. We made particular use of two other features of the toolkit. The first is called the
Workbench, and it provided pre-existing analyses for traditional graphs and reports such as
structure charts, dataflow diagrams, and cross reference lists. The results of the analyses
can be accessed from the repository using small, Refine language programs such as those
described in (Rugaber et al., 1995). The Refine compiler was the other feature we used,
compiling a Refine program into compiled Lisp.

The approach taken by the Refine language and tool suite has many advantages for
attacking problems like ours. The language itself combines features of imperative, object-
oriented, functional, and rule-based programming, thus providing flexibility and generality.

Of particular value to us is its rule-based constructs. Before-and-after condition patterns
define the properties of constructs without indicating how to find them. We had merely to
add a simple tree walking routine to apply the rules to the abstract syntax tree. In addi-
tion to the rule-based features, Refine provides abstract data structures, such as sets, maps,
and sequences, which manage their own memory requirements, thereby reducing program-
mer work. The object-oriented repository further reduces programmer responsibility by
providing persistence and memory management.

We also take full advantage of Reasoning Systems’ existing Fortran language model and
its structure chart analysis. These allowed us a running start on our analysis and provided a
robust handling of Fortran constructs that are not typically available from non-commercial
research tools.

We can see several ways in which the Refine approach can be extended. In particular, the
availability of other analyses, such as control flow graphs for Fortran and general dataflow
analysis, would prove useful. Robust dataflow analysis is particularly important to the
precision of precondition extraction.

5. Related Work

Techniques for detecting interleaving and disentangling interleaved plans are likely to build
on existing program comprehension and maintenance techniques.
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5.1. The Role of Recognition

When what is interleaved i&amiliar (i.e., stereotypical, frequently used plans), adich”
recognition (e.g., (Hartman, 1991, Johnson, 1986, Kozaczynski and Ning, 1994, Letovsky,
1988, Quilici, 1994, Rich and Wills, 1990, Wills, 1992) ) is a useful detection mechanism.
In fact, most recognition systems deal explicitly with the recognition of ekctiiat are
interleaved in specific ways with unrecognizable code or otheredictOne of the key
features olGRASPRWills, 1992), for instance, is its ability to deal with delocalization and
redistribution-type function sharing optimizations.

KBEmacs (Rich and Waters, 1990, Waters, 1979) uses a simple, special-purpose recogni-
tion strategy to segment loops within programs. This is based on detecting coarse patterns
of data and control flow at the procedural level that are indicative of common ways of con-
structing, augmenting, and interleaving iterative computations. For exaksgleacslooks
for minimal sections of a loop body that have data flow feeding back only to themselves.
This decomposition enables a powerful form of abstraction, cafiegoral abstraction
which views iterative computations as compositions of operations on sequences of values.
The recognition and temporal abstraction of iteration @&ls similarly used iIGRASPRO
enable it to deal with generalized loop fusion forms of interleaving. Loop fusion is viewed
as redistribution of sequences of values and treated as any other redistribution optimization
(Wills, 1992).

Most existing clicle’ recognition systems tend to deal with interleaving invohdatpand
controlmechanisms. Domain-based clustering, as explor@diggacin theDESIRESystem
(Biggerstaff et al., 1994), focuses aamingmechanisms, by keying in on the patterns of
linguistic idioms used in the program, which suggest the manifestations of domain concepts.

Mechanisms for dealing with specific types of interleaving have been explicitly built into
existing recognition systems. In the future, we envision recognition architectures that detect
not only familiar computational patterns, but also recognize familiar types of transforma-
tions or design decisions that went into constructing the program. Many existing clich”
recognition systems implicitly detect and undo certain types of interleaving design deci-
sions. However, this process is usually done with special-purpose procedural mechanisms
that are difficult to extend and that are viewed as having supporting roles to the clich’
recognition process, rather than as being an orthogonal form of recognition.

5.2. Disentangling Unfamiliar Plans

When what is interleaved isafamiliar(i.e., novel, idiosyncratic, not repeatedly used plans),
other, non-recognition-based methods of delineation are needed. For example, slicing
(Weiser, 1981, Ning et al., 1994) is a widely-used technique for localizing functional com-
ponents by tracing through data dependencies within the procedural scope. Cluster analysis
(Biggerstaff et al., 1994, Hutchens and Basili, 1985, Schwanke, 1991, Schwanke, 1989) is
used to group related sections of code, based on the detection of shared uses of global
data, control paths, and names. However, clustering techniques can only provide limited
assistance by roughly delineating possible locations of functionally cohesive components.
Another technique, called “potpourri module detection” (Calliss and Cornelius, 1990), de-
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tects modules that provide more than one independent service by looking for multiple proper
subgraphs in an entity-to-entity interconnection graph. These graphs show dependencies
among global entities within a single module. Presumably, the independent services reflect
separate plans in the code.

Research into automating data encapsulation has recently provided mechanisms for
hypothesizing possible locations of data plans atdhgctscope. For example, Bow-
didge and Griswold (Bowdidge and Griswold, 1994) use an extended data flow graph rep-
resentation, called a star diagram, to help programmers see all the uses of a particu-
lar data structure and to detect frequently occurring computations that are candidates
for abstract functions. Techniques have also been developed withif Bifeproject
(Canfora et al., 1993, Cimitile et al., 1994) for identifying candidate abstract data types and
their associated modules, based on the call graph and dominance relations. Further research
is required to develop techniques for extracting objects from pieces of data that have not
already been aggregated in programmer-defined data structures. For example, detecting
multiple pieces of data that are always used together might suggest candidates for data
aggregation (as for example, MPEDLN where the input parametexss, andc are used as
a tuple representing an ellipsoid, and the outpMBsARaNdDIST represent a pair of results
related by interleaved, highly overlapping plans).

6. Conclusion

Interleaving is a commonly occurring phenomenon in the code that we have examined.
Although a particular instance may be the result of an intentional decision on the part
of a programmer trying to improve the efficiency of a program, it can nevertheless make
understanding the program more difficult for subsequent maintainers. In our studies we
have observed that interleaving typically involves the implementation of séwdeglendent
plans in one code segment, often so that a progesaurcecould besharedamong the
plans. The interleaving can, inturn, lead to each of the separate plan implementations being
spread out odelocalizedhroughout the segment.

To investigate the phenomenon of interleaving, we have studied a substantial collection
of production softwarespPICELIB from the Jet Propulsion LaboratonsPICELIB heeds
to be clearly understood in order to support automated program generation as part of the
Amphion project, and we were able to add to the understanding by performing a variety
of interleaving-based analyses. The results of these studies reinforce our feelings that
interleaving is a useful concept when understanding is important, and that many instances
of interleaving can be detected by relatively straightforward tools.
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Appendix NPELDN with Some of Its Documentation

C$ Nearest point on ellipsoid to line.

SUBROUTINE NPEDLN(A,B,C,LINEPT,LINEDR,PNEAR,

. DIST)

INTEGER UBEL

PARAMETER (UBEL=9)
INTEGER UBPL

PARAMETER (UBPL=4)
DOUBLE PRECISION A

DOUBLE PRECISION B

DOUBLE PRECISION ~ C

DOUBLE PRECISION  LINEPT (3)
DOUBLE PRECISION  LINEDR (3)
DOUBLE PRECISION ~ PNEAR (3)
DOUBLE PRECISION ~ DIST

LOGICAL RETURN

DOUBLE PRECISION ~ CANDPL (UBPL)
DOUBLE PRECISION ~ CAND ( UBEL)
DOUBLE PRECISION ~ OPPDIR( 3)
DOUBLE PRECISION ~ PRJPL (UBPL)
DOUBLE PRECISION ~ MAG

DOUBLE PRECISION ~ NORMAL (3)
DOUBLE PRECISION ~ PRJEL (UBEL)
DOUBLE PRECISION ~ PRIPT (3)
DOUBLE PRECISION ~ PRINPT ( 3)
DOUBLE PRECISION ~ PT  (3,2)
DOUBLE PRECISION ~ SCALE
DOUBLE PRECISION ~ SCLA

DOUBLE PRECISION ~ SCLB

DOUBLE PRECISION ~ SCLC

DOUBLE PRECISION ~ SCLPT ( 3)
DOUBLE PRECISION ~ UDIR ( 3)

INTEGER I
LOGICAL FOUND ( 2)
LOGICAL IFOUND
LOGICAL XFOUND
IF (RETURN () ) THEN

RETURN
ELSE

CALL CHKIN ('NPEDLN')
END IF

CALL UNORM ( LINEDR, UDIR, MAG )

IF (MAG .EQ. 0) THEN
CALL SETMSG('Direction is zero vector.")
CALL SIGERR('SPICE(ZEROVECTORY)' )
CALL CHKOUT('NPEDLN' )
RETURN

ELSE IF (A .LE. 0.D0)

. .OR. (B .LE.0.D0)

(OR. (C.LE.0.D0) ) THEN

CALL SETMSG (‘Semi-axes: A=#,B=#,C=#.")
CALL ERRDP (#, A )
CALL ERRDP (#,B )
CALL ERRDP (#,C

)
CALL SIGERR ('SPICE(INVALIDAXISLENGTH)")
)

CALL CHKOUT ('NPEDLN'
RETURN
END IF
C Scale the semi-axes lengths for better
C numerical behavior. If squaring any of the
C scaled lengths causes it to underflow to
C zero, signal an error. Otherwise scale the
C point on the input line too.
SCALE = MAX ( DABS(A), DABS(B), DABS(C) )
SCLA = A/SCALE
SCLB B/SCALE
SCLC = C/SCALE
IF ((SCLA**2 .LE. 0.D0)
.OR. (SCLB**2 .LE. 0.D0)
. .OR. (SCLC*2 .LE. 0.D0) ) THEN
CALL SETMSG (‘Axis too small: A=#,B=#,C=#.")
CALL ERRDP (#,A)
CALL ERRDP (#,B)
CALL ERRDP (#,C
CALL SIGERR (‘SPICE(DEGENERATECASE)")
CALL CHKOUT ('NPEDLN")
RETURN

END IF
SCLPT(1) = LINEPT(1) / SCALE
SCLPT(2) = LINEPT(2) / SCALE
SCLPT(3) = LINEPT(3)/ SCALE
C Hand off the intersection case to SURFPT.
C SURFPT determines whether rays intersect a body,
C so we treat the line as a pair of rays.
CALL VMINUS(UDIR, OPPDIR)
CALL SURFPT(SCLPT, UDIR, SCLA, SCLB,
. SCLC, PT(1,1), FOUND(1))
CALL SURFPT(SCLPT, OPPDIR, SCLA, SCLB,
SCLC, PT(1,2), FOUND(2))
DO 50001
1=1,2
IF ( FOUND(l) ) THEN
DIST = 0.0D0
CALL VEQU (PT(L), PNEAR )
CALL VSCL (SCALE, PNEAR, PNEAR)
CALL CHKOUT ('NPEDLN’ )
RETURN

END IF

50001 CONTINUE

C Getting here means the line doesn't intersect

C the ellipsoid. Find the candidate ellipse CAND.

C NORMAL is a normal vector to the plane

C containing the candidate ellipse. Mathematically

C the ellipse must exist; it's the intersection of

C an ellipsoid centered at the origin and a plane

C containing the origin. Only numerical problems

C can prevent the intersection from being found.
NORMAL(1) = UDIR(1) / SCLA**2
NORMAL(2) = UDIR(2) / SCLB**2
NORMAL(3) = UDIR(3) / SCLC**2
CALL NVC2PL ( NORMAL, 0.D0, CANDPL )

CALL INEDPL (SCLA,SCLB,SCLC,CANDPL,CAND,XFOUND)
IF (.NOT. XFOUND ) THEN

CALL SETMSG ( 'Candidate ellipse not found.”)

CALL SIGERR ( 'SPICE(DEGENERATECASE)' )

CALL CHKOUT ('NPEDLN' )

RETURN
END IF

C Project the candidate ellipse onto a plane

C orthogonal to the line. We'll call the plane

C PRJPL and the projected ellipse PRJIEL.

CALL NVC2PL (UDIR, 0.DO, PRJPL)
CALL PJELPL ( CAND, PRJPL, PRJEL)

C Find the point on the line lying in the project-

C ion plane, and then find the near point PRINPT

C on the projected ellipse. Here PRJPT is the

C point on the line lying in the projection plane.

C The distance between PRJIPT and PRINPT is DIST.
CALL VPRJP ( SCLPT, PRJPL, PRJPT )
CALL NPELPT ( PRJPT, PRJEL, PRINPT)

DIST = VDIST ( PRINPT, PRJPT)

C Find the near point PNEAR on the ellipsoid by

C taking the inverse orthogonal projection of

C PRJINPT; this is the point on the candidate

C ellipse that projects to PRINPT. The output

C DIST was computed in step 3 and needs only to be

C re-scaled. The inverse projection of PNEAR ought

C to exist, but may not be calculable due to nu-

C merical problems (this can only happen when the

C ellipsoid is extremely flat or needle-shaped).

CALL VPRJPI(PRINPT,PRJPL, CANDPL, PNEAR, IFOUND)

IF (.NOT. IFOUND ) THEN
CALL SETMSG (Inverse projection not found.")
CALL SIGERR ('SPICE(DEGENERATECASE) )
CALL CHKOUT ('NPEDLN' )
RETURN

END IF

C Undo the scaling.

CALL VSCL ( SCALE, PNEAR, PNEAR)

DIST = SCALE*DIST

CALL CHKOUT ('NPEDLN")

RETURN

END
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C Descriptions of subroutines called by NPEDLN:

C

C CHKIN Module Check In (error handling).

C UNORM Normalize double precision 3-vector.

C SETMSG Set Long Error Message.

C SIGERR Signal Error Condition.

C CHKOUT Module Check Out (error handling).

C ERRDP Insert DP Number into Error Message Text.
C VMINUS Negate a double precision 3-D vector.

C SURFPT Find intersection of vector w/ ellipsoid.

C VEQU Make one DP 3-D vector equal to another.
C VSCL Vector scaling, 3 dimensions.

C NVC2PL Make plane from normal and constant.

C INEDPL Intersection of ellipsoid and plane.

C PJELPL Project ellipse onto plane, orthogonally.

C VPRJP Project a vector onto plane orthogonally.
C NPELPT Find nearest point on ellipse to point.

C VPRJPI Vector projection onto plane, inverted.

C
Cc
C Descriptions of variables used by NPEDLN:

A Length of semi-axis in the x direction.

B Length of semi-axis in the y direction.

C Length of semi-axis in the z direction.
LINEPT Point on input line.

LINEDR Direction vector of input line.

C PNEAR Nearest point on ellipsoid to line.

C DIST Distance of ellipsoid from line.

C UBEL Upper bound of array containing ellipse.
C UBPL Upper bound of array containing plane.
CPT Intersection point of line & ellipsoid.

C CAND Candidate ellipse.

C CANDPL Plane containing candidate ellipse.

C NORMAL Normal to the candidate plane CANDPL.
C UDIR Unitized line direction vector.

C MAG Magnitude of line direction vector.

C OPPDIR Vector in direction opposite to UDIR.

C PRJPL Projection plane, which the candidate

C ellipse is projected onto to yield PRJEL.

C PRJEL Projection of the candidate ellipse

C CAND onto the projection plane PRJEL.

C PRJPT Projection of line point.

C PRJINPT Nearest point on projected ellipse to

C projection of line point.

C SCALE Scaling factor.

Cc
c
Cc
Cc
C
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