
Experiment on the Automatic Detection
of Function Clones in a Software System Using Metrics

Jean Mayrand

Vice-President Technology
T&oft Ventures Inc.

1000 De La Gauchetikre
Ouest

25* Floor
Montreal, Quebec
Canada H3B 3M4

Phone: (5 14) 397-8454
Fax: (514) 397-8451

jmayrand@ telventures.com

Claude Leblanc

Information Technology
Procurement
Bell Canada

2265 boul. Roland-Therrien
Longueuil, Quebec,

Canada J4N lC5
Phone: (514) 448-5091

Fax: (514) 647-3163
clleblan@qc.bell.ca

Ettore M. Merlo

Assistant Professor
Department of Electrical

and Computer Engineering
lkole Polytechnique

P. 0. Box 6079,
Downtown Station,
Montreal, Quebec,
H3C 3A7, Canada,

Phone: (5 14) 340-5758
Fax: (514) 340-3240

merl@rgl.polymtl.ca

Abstract

This paper presents a technique to automatically
identify duplicate and near duplicate functions in a large
software system. The identification technique is based on
metrics extracted fi’om the source code using the tool
Datrix? This clone identificafion technique uses 21
function metrics grouped into four points of comparison.
Each point of comparison is used to compare functions
and determine their cloning level. An ordinal scale of
eight cloning levels is defined. The levels range from an
exact copy to distinct functions. The metrics, the
thresholds and the process used are fully described. The
results of applying the clone detection technique to two
telecommunication monitoring systems tofaling one
million lines of source code are provided as examples.
The information provided by this study is useful in
monitoring the maintainability of large software systems.

1. Introduction

Initial work for this study was conducted to identify
freshman engineering students who were sharing too’
much of their software projects. When a student copies
the work of another it is usually because he is not able to
do the assignment or simply does not have time to

1063-6773196 $5.00 0 1996 IEEE

complete it. Due to this lack of knowledge, capacity or
time, the modifications made to the software are usually
cosmetic. The foundation and structure of the software
are rarely modified. Typically, variable names are
modified, documentation is added or removed, source
code layout is re-organized and function order in the file
is changed. Knowing how near copies are produced, we
have defined a process based on source code analysis and
software metrics that identifies potential function clones.

The main goal of this work is to manage the growth in
size and complexity of a software system due to source
code cloning. The control of this growth is a concern for
the telecommunication industry which places very high
demands on software for reliability, longevity and
modifiability.

Clone detection is a technique that finds functions that
are an exact copy or a mutant of another function in the
system. Previous work in clone detection using metrics
was performed by [9], [lo], [2] and [Ill. Other
approaches using text-based analysis were presented by
[12] and [l]. The basis of comparison in this paper is a
set of source code metrics measured on each function of a
system. The scope of this work is procedural languages.

Most clones are created by copying a function and then
making a series of modifications to the copy. We usually
find this type of cloning in the absence of good re-use
development processes. Designers generally copy an
entire sub-system. Then they rename all the functions

244

Proceedings of the 1996 International Conference on Software Maintenance (ICSM '96)
1063-6773/96 $10.00 © 1996 IEEE

and start modifying the software. This technique ensures
against unplanned effects on the original piece of code
just copied. In the long run the software grows in size
and complexity and requires more resources to maintain
and enhance.

A large number of software clones induces undesirable
side effects in a software system. The first possible effect
is an increase in the resources required by the software
on the system. This increases the cost of operation. For
example, when software gets too big for a
telecommunication system, new memory cards need to be
acquired and deployed in the network. This represents an
increase in cost. In the past, we have seen systems with
up to 20% of their functions implemented as clones. This
extra fat on the system exhausts hardware resource
prematurely. The second effect of clones is to make the
software more difficult to maintain. Problems solved in a
function later re-appear in clones of an earlier version of
the function.

The main difficulty in detecting clones in a large scale
system is sheer size. Due to the system’s size, it is
impossible to manually track down the clones. Usually no
documentation is kept on cloning activities. The main
goal of our work is to identify these clones automatically.

Clone identification has great potential in the
maintenance and re-engineering of legacy systems. The
information obtained ti-om clone detection can be used at
the planning stage of major revamps of old systems. The
information can also provide insight into latent
difficulties in a re-engineering task. If there are many
clones and these clones are a potential risk to
maintenance, they could be removed prior to or as part of
the re-engineering task.

This paper contains four major sections. Section 2
presents the source code assessment framework used to
conduct this study. Section 3 describes the clone
identification process; the four points of comparison are
described, followed by the eight levels of cloning.
Section 4 gives the results obtained using the clone
detection process on two large scale systems. Finally,
section 5 presents the cloning control process.

2. DatrixTM assessment framework

The assessment of the software was performed using
DatrixTM, a source code analyzer tool set [S]. Figure 1
presents the assessment framework of DatrixTM. It is
based on two successive abstractions of the source code.
The first abstraction is from the source code to the
Abstract Syntax Tree (AST). The AST is a tree-based
representation of the tokens contained in the source code.
It provides an exact representation of the source code.

DatrixTM works with a number of source code languages.
In order to support these languages, the AST is translated
into an Intermediate Representation Language (IRL) [3].
The IRL contains four categories of information. The
first category of information deals with the architecture
of the software. This includes information on module, file
and library dependencies. The second category of
information about the software covers the static data
types. The third category of information represents the
control flow of the software. The last category represents
the flow of data in the software. The IRL abstraction
contains all the information required to compute metrics
and to create graphical illustratiorl of the architecture,
data declaration, control t-low aud data flow graphs of the
software.

This paper focuses on the control flow metrics and data
flow metrics contained in the IRL. These metrics were
selected because they provide detailed information on the
internal characteristics of functions. Architecture and
data declaration information were not selected since they
provide no information about the internal characteristics
of functions.

Figure 1 - Assessment framework

The IRL abstraction is described using the Object
Modeling Technique (OMT) object model [4]. Figure 2
presents a simplified version of the IRL model used
inside DatrixTM for abstraction of the control flow and
data flow graphs. In this abstraction, both the expressions
and the control flow between them are represented.

245

Proceedings of the 1996 International Conference on Software Maintenance (ICSM '96)
1063-6773/96 $10.00 © 1996 IEEE

Expressions are the nodes Nds of the control graph
GphCtl. The expression Exp has two specialized classes:
the conditional expression ExpCond and the function call
expression ExpCall. These classes are used to calculate
metrics related to the number of decisions and the
number of calls in a function. The associations Use and
Def between Exp and Ident represent the data flow usage
and definition of identifiers by the expression [13].
Relations between expressions are the Arcs of the control
graph. Four types of arcs are defined. CtlJump represents
an unconditional jump from one expression to another.
The three other types of jumps are based on a Boolean or
a switched decision.

Figure 4 presents the IRL translation of the function fct
fi-om Figure 3. The boxes represent nodes in the model.
The token in the box states the type of node according to
the model presented in Figure 2. The nodes START and
END represent the beginning and the end of the function
fct. The name after the node type is the identifier referred
to by the node. Once this translation of the source code is
obtained, it is possible to calculate metrics that are
independent of source code language. The number of
decisions in the function equals the number of IRL node
of the type ExpCond. The number of functions that are
called equals the number of IRL nodes of the type
ExpCall.

c? CtlJump

:igure 2 - Control flow and data flow model

Figure 3 presents an example of a C language function.
This function contains one decision, two function calls,
three variable definitions and two variable usages.

Figure 3 - C language source code example

L-J Start

ctlJlllnp ctlJump

pi-l-q
+

IdaWet Exp Identxet

Idmtxet

el Ehd

Figure 4 - IRL representation of the example

More than fifty metrics are calculated from the 1%
representation. These metrics characterize files, classes
and functions since this study aims at automatically
identifying function clones, only the function metrics will
be used. The metrics used in this study are described in
Appendix A.

3. Clone identification

A clone pair is a pair of similar functions in a system.
The number of potential clone pairs, considering pair

246

Proceedings of the 1996 International Conference on Software Maintenance (ICSM '96)
1063-6773/96 $10.00 © 1996 IEEE

<fl,f2> as indistinguishable from &,fl>, for a system
containing II functions is :

Potential-Clone- Pairs(n) =
n(n - 1)

2

3.1 Points of comparison for clones

This section describes the point-of-comparison concept
and clone identification strategies. The identification of
clones is based on the following four points of
comparison:

1. Name.
2. Layout.
3. Expressions.
4. Control flow.

The first point of comparison between functions is
their names. If two functions have the same name they
are likely clones. In large scale systems, we have module
boundaries that hide function names. These boundaries
make it possible to have two functions with the same
name in two different modules. The comparison of names
is case sensitive. The names of functions in source code
languages that are not case sensitive are translated into
uppercase in IF&

The second point of comparison is the layout of
functions. We define “layout” as the visual organization
of the source code, i.e. how the source code is organized
in terms of comments, indentation, blank lines and
variable names. Table 1 presents the metrics used to
compare the layout of functions.

Table 1 - Layout metrics
Abbr. I Description 1 Delta

ComDecVol 1 Volume of declaration comments 1 10
I ComStrVol I Volume of control comments I 10 I

ComLogNbr Number of logical comments 5
LocNbr Numlxr of non-blank lines 5
VaLenAvg Average variable name length 2

For the layout, expression and control flow points of
comparison, two functions can be considered equal,
similar or distinct. Two functions are equal for a point of
comparison if all metrics related to that point of
comparison are equal in both functions. Two functions
are similar for a point of comparison if the absolute
difference is less than or equal to the delta threshold
defined for each metric in the point of comparison. Two
functions are distinct for a point of comparison if there is
at least one metric where the absolute difference is
greater than the delta value.

Deltas were defined on the basis of metric’s definition
and our knowledge of the distribution of that metric on
large scale systems [6]. We have used numbers that are
as low as possible in order to reduce the number of false
accusations. A false accusation occurs when the clone
detection process declares two unrelated functions to be
clones.

Figure 5 presents an example of the evaluation of the
layout point of comparison between four functions. Three
symbols are used to represent the equal (=), similar (=)
and distinct (!=) relations.

IFCT4 1

Figure 5 - Layout metric example

Table 2 presents the layout metric values of the four
functions in the example. The FCTl and FCT2 functions
are equal since all their metrics are equal. FCTl and
FCT3 are similar since the absolute difference between
their metrics are all below the delta values. FCTl and
FCT4 are distinct since the difference between the
VurLenAvg metric values 18.2-10.5 I = 2.3 is greater than
the delta value of 2.

Table 2 - Layout metric value example

The third point of comparison is based on the
expressions in the functions. The number of expressions
in a function, their nature aqd their complexity are
considered. Table 3 presents the metrics for comparing
expressions.

247

Proceedings of the 1996 International Conference on Software Maintenance (ICSM '96)
1063-6773/96 $10.00 © 1996 IEEE

Table 3 - Exoression metrics

The fourth point of comparison between functions is
their control flow. The control flow characteristics
considered include number of nodes, number of arcs,
information related to decisions and information related
to loops in a function. Table 4 presents the metrics used
in the comparison of function control flow. The delta
tolerated is very low since a small variation in control
structure has a large impact on the function’s behavior. If
the deltas are increased, the possibility of false
accusations also increases. The delta value for the
number of independent paths [7] is 100 since this metric
increases rapidly when decisions are added sequentially
in a function. For example, every time an if statement is
placed at the beginning of a function the number of paths
doubles.

Table 4 - Control flow metrics
1 Abbr. I Descritdion 1 Delta 1

These points of comparison are conceptually
orthogonal and can be used independently. The following
section will define an ordinal scale [5] of cloning based
on a structured way of using these points of comparison.

3.2 Clone identification scale

We have defined eight strategies in identifying clones.
These strategies define an ordinal scale of cloning. The
first strategy is the most exacting one. It requires that the
function be an exact copy without any modification. AS
we move up the scale, we identify function pairs that are
less and less similar.

The ordinal scale is:
1. ExactCopy
2. DistinctName
3. SimilarLayout
4. DistinctLayout
5. SimilarExpression
6. DistinctExpression
7. SimilarControlFlow
8. DistinctControlFlow

The scale is ordinal since we have a monotonic
increase in the difference between functions as we move
up the scale. The scale is not an interval or ratio one
since we have no the concept of distance between the
values on the scale. For example, we cannot state that the
distance between a DistinctName clone and an
ExactCopy clone is the same as the distance between a
DistinctLayout clone and a SimilarLayout clone. What
can be said is that functions in an ExactCopy clone
relation are more alike then functions in a DistinctName
clone relation, the latter more alike then functions in a
SimilarLayout clone relation, etc.

Figure 6 relates our concept of good and bad
programming to the cloning scale. Best use is made of
resources when all functions in a system are doing
different things. The worst situation occurs when there
are many copies duplicating functions in the system.

I
Good

DistinctControlFlow

SimilarControlFlow

DistinctExpression

SimilarExpression

DistinctName

Bad

Figure 6 - Cloning scale

Table 5 presents the symbols used to represent the
equal, similar and distinct relation for the points of
comparison. Table 6 presents the mapping between the

248

Proceedings of the 1996 International Conference on Software Maintenance (ICSM '96)
1063-6773/96 $10.00 © 1996 IEEE

points of comparison and the cloning levels. The
columns of the table are:

cloning scale,
point of comparison for name (Nam),
point of comparison for layout (Lay),
point of comparison for expressions (Exp),
point of comparison for control flow (Con).

Table 5 - Cloning scale symbols
Symbol Description

= Equal values for all metrics in a
point of comparison between two
functions

!=

X

At least one metric not equal but
within the delta in a point of
comparison between two functions
At least one metric not equal and
outside the delta in a point of
comparison between two functions
The point of comparison is not
considered in the scale evaluation.

Table 6 - Cloning scale vs points of comparison
I Scale 1 Nam 1 Lay 1 Exp 1 Con

I I I 1

The first strategy is named ExactCopy. This strategy
requires that all four points of comparison be equal. This
means that all values of all metrics between the functions
must be equal.

The second strategy is named DistinctName. This
strategy is the same as the ExactCopy strategy except that
the names of the functions must be different. This type of
cloning appears when functions are copied inside the
same module. The functions are renamed to avoid name
clashes in the module.

This section presents the results obtained when the
automatic clone detection strategies were applied to two
telecommunication monitoring systems. These systems
are currently being maintained and enhanced. The
information provided by automatic clone detection is
useful in improving the maintainability of the software.
Clones can be removed and original functions placed in a
re-usable library. The difference between two clones can
be evaluated in order to parametrize a function and use
this function in multiple contexts.

4.1 Analysis of clone relations

The third strategy is named SimilarLayout. This Table 7 presents the size, the number of functions and
strategy is the same as the DistinctName strategy except the number of potential clones for project A and
that variations are tolerated for the ConDecVoZ, project B. For project B, 227 functions were removed
ComStrVol, ComLogNbr, LocNbr and VarLerlAvg from the database. These functions were dummy
metrics. This means that comments have been added or functions introduced for configuration or database

removed, the number of lines of code has changed or the
variable names have changed. The main focus of this
strategy is the layout of the functions. The constraint on
the names of the functions is removed.

The fourth strategy is named DistinctLayout. This
strategy requires that expression and control flow metrics
be identical in both functions. This also implies that the
layout is different.

The fifth strategy is named SimilarExpression. This
strategy requires identical control flow metrics, but
tolerates variation in the expression metrics. The
constraints on layout are removed. This is the most
typical form of cloning. It means that expressions are
added or removed inside the structure of the function.

The sixth strategy is named DistinctExpression. This
strategy requires that the control flow metrics be
identical. Having the same structure but different
expressions represents the re-use of a control flow
pattern.

The seventh strategy is named SimilarControlFEow.
This strategy tolerates variation in control flow structure.
The constraints 011 expressions are removed. We must set
a minimum difference in size and functionality in order
to reduce the number of false accusations. This is because
very small functions can look similar yet be very
different. This is true, for instance, of functions that are
strictly sequential without any control flow structure.

The eighth strategy is named DistinctControlFlow.
This strategy captures all function pairs that are not
considered clones or mutants according to our
classification.

4. Case studies

249

Proceedings of the 1996 International Conference on Software Maintenance (ICSM '96)
1063-6773/96 $10.00 © 1996 IEEE

management. These dummy functions contained no
executable code and were all alike. The database
management functions handled user requests. The
development team was aware of this and, in that specific
context, using clones was the most efficient approach.
These functions were removed from the metric database
because they were artificially increasing the number of
exact copy clones in the system.

Table 7 - Ma nitude of case studies 21
The procedure used to identify clones in a system

involves testing level 1 to level 8 for each and every pair
of functions. Testing starts with level 1. If level 1 fails
level 2 is tested and so forth up to level 8. The eight
levels are mutually exclusive, i.e., a pair of functions can
only be classified in one level.

Approximately 500 mathematical operations were
required for testing each pair. The total cost of clone
identification in projects A and B was 25 billion
operations. The experiment was conducted using a C++
program on a Pentium ‘75MHz computer. The total time
required to evaluate clones in each project was about 15
minutes.

Table 8 presents the number of pairs of functions in
project A and project B corresponding to each strategy.
Level 8, DistinctControlFlow captured all the pairs of
functions that were not considered clones. This group
represents the desired situation. In both projects, more
than 96% of the relations between functions are not clone
relations. This does not mean, however, that the system
has almost no clones. It only means that if you take at
random two functions, 96% of the time they will not be
in a clone relationship. The clone relations are
represented by levels 1 to 7.

Table 8 - Number of clone

5-SimilarExpression 324402 117776
6-DistinctExpression 385598 326262
7-SimilarControlFlow 225 979 231 919

Figure 7 presents the relative cloning of project A and
project B. The 100% on the Y-axis represents the total

number of possible clone relations for a project. We used
a relative scale to compensate for the small difference in
size relatively between the projects. In general, the
cloning is less frequent in project B. Only level 1 cloning
is greater. We investigated this phenomenon and found
that project B comprised multiple processes and the
source code files contained a large number of functions.
When a designer wants to create a new process, he copies
the tiles of the original process but changes only a few
functions. The bulk of the files remains intact, thus
causing many level 1 clones.

The distinction between a level 1 clone and a level 2
clone is the name difference. A designer usually changes
names when there is a clash at link time. These name
clashes depend on the definition of the executable
modules in the system. The differences between the two
projects can be attributed to the architecture and the
development technique used to add functionality to the
system.

100.00% - ,
2 3 4 5 6 7

I 10.00% -

l.Oo?h

0.10%

0.01%

Figure 7 - Relative cloning

4.2 Function classification

The next question that comes to mind is: How many
functions are implicated in a cloning relationship? To
evaluate how many functions are in a cloning relation,
we have to classify each function. Functions are classified
according to their worst clone relation. The concept of
worst is ranked from level 1 to 7, level 1 being the worst
case. If a function has a level 1 cloning relation it is
classified as a level 1 function. If a function has no
level 1 cloning relation but has at least one level 2
relation, it is classified as a level 2 function. The
functions classified as level 8 are those functions that

250

Proceedings of the 1996 International Conference on Software Maintenance (ICSM '96)
1063-6773/96 $10.00 © 1996 IEEE

have no cloning relation with any other function. Table 9
presents the results of function classification.

Table 9 - Function classification
Strategy
1 -ExactCopy

1 Project A Project B
! 1765 2849

88 7iQ Z-DistinctName ! 5 -...
3-SimilarLayout 500 606
4-DistinctLayout 394 306
5-SimilarExpression 1280 988
6-DistinctExpression 740 489
7-SimilarControlFlow 1158 840
&DistinctControlFlow 721 348

Figure 8 presents the relative classification of the
function cloning level. This chart indicates the types of
cloning prevalent in the development of a system.

20.00%

15.00%

10.00%

5.00%

0.00% -I 1 1
12 3 4 5 6 7 8

l--zzml
Figure 8 - Relative function classification

4.3 Visual validation of the case studies

A visual inspection of a sample of clones was
conducted for each project. We started with level 1 clones
forming the largest community. A community is defined
as a group of functions in a cloning relationship. For
instance, if we have three pairs of level 1 clones
{(fctl,fct2), (fct2,fct3), (fctl,fct3)) we have a community
of three functions (fctl,fct2,fct3). During the inspection
of project A, we discovered that the level 1 functions
were inside files copied into different directories.
Table 10 presents the number and size of communities
related to the file copy activities, Project A contained 1
function replicated in 5 different locations and 860
functions each replicated in 2 locations. In this case, the
definition of reusable libraries is an easy task. By keeping
a single copy of each function, 892 functions can be

removed. This represents a 12% reduction in the number
of functions in the system.

During the. level 2 inspection, we found one
community of 7 functions all alike. The only difference
was the name of the function itself or the name of the
types and variables used inside it. This kind of cloning is
more difficult to remove. One approach is to parametrize
the function for types and variables. The difficulty in
parametrization is directly related to the language’s
capacity. In languages like C and C++, parametrization
is very easy; in other languages it represents a difficult
task. The costs and benefits need to be assessed case by
case. We also found that a size constraint, like the one
imposed at level 7, would help eliminate very small
functions. The metrics’ discrimination power on small
functions is greatly diminish. With small functions, we
should change our strategy and use a text-based
comparison.

For levels 3 to 7, the rate of false accusations
increased. We had to rely on the inspection to judge
whether cloning had occurred. The results should thus be
used as a guideline, not a classification.

The procedure used in this visual validation can form
the basis of an improvement program. The next section
describes how to control the level of cloning in a software
system.

5. Cloning control

The goal of the cloning control is to increase the
maintainability of a system. The evaluation of the level of
cloning provides a picture of the current state of the
software. To modify this picture, we have to change how
the software is developed and enhanced. Cloning control
comprises four steps. These steps are describe in the next
four sub-sections.

5.1 Measurement program

The first step is to implement a multi-version source
code measurement program [6]. This provides source
code metrics for the software system on a regular basis.
This is a key factor in monitoring the modifications made
to the software development procedures. Without this
information it is impossible to evaluate the impact on the

251

Proceedings of the 1996 International Conference on Software Maintenance (ICSM '96)
1063-6773/96 $10.00 © 1996 IEEE

software product caused by changes made to the
development procedures.

5.2 Design principles

The second step is to implement or review the design
and programming guidelines in order to include policies
regarding cloning. These policies must be part of the
reuse strategies of the development organization. They
need to cover the goals of reuse and acceptable practices
in order to maintain a cohesive product architecture.
Source code cloning could be tolerated under exceptional
circumstances. For instance, during an emergency patch
procedure when the entire integration test cannot be
re-executed, cloning a module and patching the clone
might be acceptable. In such a situation, a merge plan
should be established for a later release. The goal is not
to set up an inflexible process, but to proceed
knowledgeably. Knowledge of the cloning activity and its
rationale are very difficult to re-construct. This is why it
is important to capture the information at the time the
cloning is done.

5.3 Clone monitoring

The third step is to mandate someone in the
development organization to monitor cloning in the
system. This person is usually the system architect or the
person responsible for integration. These persons are
suitable since clone removal deeply involves the
architecture and the libraries of the system. Monitoring
on a regular basis should provide an indication of the
addition and removal of redundant code. A minimal set
of indicators are the percentage of redundant functions
and the percentage of redundant statements.

Once the three steps are completed, the addition of new
clones should be minimal. The final step involves the
removal of existing clones.

5.4 Clone reduction

The fourth step targets clones that should be removed.
This targeting should be based on the current
enhancement of the system and the areas requiring a
great deal of maintenance. Clone removal should start
with level 1 clones. The cost of removing clones
increases along the ordinal scale presented. Removing a
level 1 clone is easier than removing a level 5 clone.

Level 1 clones are removed by creating common
libraries of functions. This is a low cost and low risk
technique. To remove clones from levels 2 and up, we
use parametrization. The parametrization of a function

can take many forms. It can be achieved by means of
function parameters and/or preprocessing macros or, in
the case of C++ source code, function templates. The
selection of a specific technique is based on the nature of
the cloning between functions.

Removing clones can become an expensive activity and
hence, like any software project, should be well planned
and well managed. For the first three steps, the cost is
mainly toward the establishment of a systematic
measurement program for the software. Once this
program is in place, clone detection does not require
extensive resources. The measurement program has
further uses that should also be considered. For example,
it is usually a key part of a product quality improvement
program.

6. Conclusion

We have presented our experiments with automatic
cloning detection. We have found this activity to be
useful in improving the maintainability of a software
system by managing and removing source code function
clones.

The main cost in conducting the experiments was the
measurement of the software. Cloning detection was not
a major cost.

We have found the detection of level 1 clones to be
reliable. Our visual inspection for the case studies
showed a negligible level of false accusation. The level of
false accusation increased substantially at level 3.

The metrics and deltas used influence classification.
The addition of metrics for such domains as the
interfaces and the reduction of delta values should
minimize the number of false accusations.

Computational costs are polynomial. The projects
presented were under 10,000 functions each. Our largest
system under monitoring has 250,000 functions. We still
have to optimize and enhance our strategy in order to
apply it to this type of very large scale system. The first
way of optimizing is to evaluate from level 8 to level 1
instead of level 1 to level 8. This would reduce the
number of operations since most of cloning relation are
level 8.

7. Future work

Our experiments leave many avenues to explore. The
first would be to reproduce the experiment and work on
the sensitivity of delta definitions. We found that both
prqjects behaved very similarly. With the information at
hand, it is not possible to deduce whether this is a

Proceedings of the 1996 International Conference on Software Maintenance (ICSM '96)
1063-6773/96 $10.00 © 1996 IEEE

coincidence or a lack of sensitivity of some clone
detection strategies.

One avenue that we still need to explore is the use of
relative delta instead of absolute delta. Instead of
defining a delta of 2 for the number of decision, we could
define a delta of 1% . Our hypothesis is that relative delta
would help with small functions where metric values are
very low. On large functions, the delta in percentage
would produce large values. Probably a combination of
percentage with a fixed upper value would be the best
compromise.

The clone detection technique needs to be tested on
object-oriented software. The detection of clones could be
extended to the detection of patterns in object-oriented
systems.

8. Acknowledgment

The authors would like to thank the l?cole
Polytechnique. Many thanks to our colleagues who are
involved in product assessment, namely, Bruno Lag&,
FranGois Guay, Martin Leclerc and Alain April. Datrix is
a trademark of Bell Canada

9. References

[l] Baker, S.B., “On Finding Duplication and Near-Duplication
in Large Software Systems” In Proceedings of the Working
Conference on Reverse Engineering 1995, Toronto, Canada,
July 1995.

[2] Kontogiannins, K., DeMori, R., Bernstein, M., .Galler, M.,
Merlo, E., “Pattem matching for Design Concept
Localization?‘, In Proceeding of the Second Working
Conference on Reverse Engineering 1995, Toronto, Canada,
July 1995.

[3] Mayrand, Jean , “Modhlisation par niveaux s&n~itiques des
programmes sources”, (FRENCH), Master’s thesis, l?cole
Polytechnique de Montrhal, 1991.

[4] Rumbaugh, James; Blaha, Michael; Premerlani, William;
Eddy, Frederick and Lorensen, William, Object-Oriented
Modeling ur?d Desiga, Prentice Hall, Englewood Cliffs, New
Jersey, 1991.

[5] Fenton, N.E. “Software Metrics -- A Rigorous Approach”,
Chapman & Hall, London, 337p., 1991.

[6] Mayrand J., Coallier F., “System Acquisition Based on
Software Product Assessment”, to be presented at the 18’
International Conference on Software Engineering, Berlin 25-
29 March 1996.

[7] Schneidewind, N. F., and Hoffmlln H., “An experiment in
software error data collection and analysis”, IEEE Tmnsaction
on Software Engineering SE-$3, May, 1979, pp.276.286.

[8] Bell Canada, “Datrix Reference Manual”, 1996.
[9] McCabe T.J. “Reverse Engineering, reusability, redundancy:

the connection”, American Programmer 3, 10. October 1990,
pp.8-13.

[lo] Buss, E., et. al. “Investigating Reverse Engineering
Technologies for the CAS Program Understanding Project”,
IBM Systems Journal, Vol. 33, No. 3, 1994, pp. 477-500.

[111 Kontogiannis, K., DeMori, R., Berstein, M., Galler, M.
Merlo, E., “Pattern matching for Clone and Concept
Detection”, Journal of Automated Software Engineering,
March 1996.

[121 Johnson, H., “Identifying Redundancy in Source Code Using
Fingerprints”, In Proceedings of CASCON ‘93, IBM Centre
for Advanced Studies, October 24-28, Toronto, Vol.1,
pp.171-183.

[13] Aho, Alfred V., Sethi, Ravi and Ullman, Jeffrey D.,
Compilers: Principles, Techniques and Tools, Addison
Wesley Publishing Company, Reading, Massachusetts, 1986.

Appendix A

Function Metrics for Layout
ComDecVol: Number of alphanumeric characters found in

the comments located in the declaration section.
ComStrVol: Number of alphanumeric characters found in

the comments located in the executable section.
ComLogNbr: Number of logical comments within a

function.
LocNbr: Number of lines of code within a function. A line of

code is defined as a line that is not empty.
VarLenAvg: Mean number of characters of all variables that

are used in the function.

Function Metrics for Expressions
CalNbr: Total number of call sites in the function. This

metrig takes into account repetitive calls to the same function.
CalUnq: Number of distinct functions which are called by a

given function.
CndCplAvg: Arithmetic mean of the complexity of all the

decisions in a function.
StmDecNbr: Number of declarative statements within a

function.
StmExeNbr: Number of executable statements within a

function.

Function Metrics for Control flow graph
ArcNbr: Number of arcs found in the control graph.
CndNbr: Number of decisions in the control graph of a

function.
CndSpnAvg: Mean span of the branches of conditional arcs.

This metric is expressed in number of unit arcs.
KntNbr: Number of arc crossings in the control graph.
LopNbr: Number of backward arcs in the control graph.
NdsExtNbr: Number of nodes in the control graph where

the flow stops or returns to a calling software unit.
NdsNbr: Number of nodes in the control graph.
NstLvlAvg: Arithmetic mean of the nesting level of the

control graph of a function.
PthIndNbr: Number of paths in the control flow.
StmCtlNbr: Number of control statements.
StrBrcNbr: Number of breaches of structure, based on the

principles of structured programming.

253

Proceedings of the 1996 International Conference on Software Maintenance (ICSM '96)
1063-6773/96 $10.00 © 1996 IEEE

