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Abstract

Intermediate representations (IR) are a key  issue both
for compilers as well as for reverse engineering tools to
enable ejicient  analyses. Research in the$eld  of compilers
has proposed many sophisticated IRS  that can be used in
the domain of reverse engineering, especially in the case of
deep analyses, but reverse engineering has also its own
requirements for intermediate representations not covered
by traditional compiler technology This paper discusses
requirements of IRS for reverse engineering. It shows then
how most of these requirements can be met by extending
and integrating existing IRS. These extensions include a
generalized AST and a mechanism supporting multiple
views on programs. Moreover, the paper shows how these
views can eficiently  be implemented.

Keywords: reverse engineering, program representation,
views

1. Introduction

As reported at WCRE 96 [Ruga96],  one step toward a
research infrastructure accelerating the progress of reverse
engineering is the creation of an interoperable intermediate
representation. This paper contributes to this goal by pre-
senting a list of requirements for such a representation and
proposing a candidate technology.

In the field of compiler technology, the importance of a
suitable intermediate representation (IR) has long been rec-
ognized. The design of an intermediate representation is a
key factor for the efficiency of analyses for code optimiza-
tion and has been extensively studied. This experience
should be reused by reverse engineering analyses which
originally stem from optimizing compiler technology.

However, this compiler technology does not address all
reverse engineering concerns, since reverse engineering has
also additional demands on intermediate representations, for
example, the need to interact with users during analysis and
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capture their feedbacks. Furthermore, as Kazman, et al.
point out in a paper at this conference [Kazm98],  an inter-
mediate representation for reverse engineering must support
different levels of abstraction - from the code-structure level
up to the architectural level - to be suitable for all phases of
reverse engineering.

Related Research
Many IRS have been proposed (DIANA [Goos81],

CCG[Kinl94],  IRIS [hi],  F(p) [Cimi91])  but most of them
are language-specific or do not take advantage of more re-
cent advances in optimizing compiler technology which
could provide the performance needed to analyze large in-
dustrial systems. Examples of such recent advances include
sparse representations likle SSA [Wegm91],  GSA [Ba1190],
and Dependence Flow Graphs [Ping91],  which support
more efficient analyses.

In reverse engineering, Kinloch and Munro [Kin1941
use the combined C graph to identify reusable components.
In [Cimi95],  Cimitile et al. combine this graph with AST in
order to support specification-driven slicing. In both cases,
the representations are language-specific. Canfora and Cim-
itile propose F(p) [CimiS,ll] which is largely language-inde-
pendent but is not designed to optimize operations of any
particular analyses.

A related topic is the data exchange format among tools
potentially using different IRS. Klint and Verhoef propose
the Annotated Term Format as an externalized representa-
tion as part of the Toolbus  architecture [Klin98]  that sup-
ports tool integration.

Paper outline
This paper draws a l.ist  of requirements of IRS for re-

verse engineering (Section 2),  discusses the drawbacks and
advantages of existing IRS (Section 3) and proposes a new
IR which meets most of these requirements (Section 4). In
addition, an implementation for the view mechanism is sug-
gested (Section 5) and the use of the IR is illustrated with us-
age scenarios taken from Kazman et al. [Kazm98]  and from
our own work on abstract data type recovery (Section 6).
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2. IR Requirements for Reverse Engineering the following:

Tasks in reverse engineering can involve analyses
ranging from very fine-grained, e.g., checking which func-
tion pointers can be used to call a routine, to rather coarse-
grained, e.g., providing an overview of the main compo-
nents of the  system and what means of communication are
used among them. An intermediate representation should
support all these  tasks. Generally, an IR for reverse engi-
neering supporting deep analyses will have the same re-
quirements as traditional IRS for compilers. But an IR for
reverse engineering also has further requirements, in par-
ticular to support shallow analyses and to allow for higher
abstractions and user annotations.

(R7) The IR should preserve a mapping to the original
source code; this enables an analysis to feed back infor-
mation to the user in terms of the original program.
This requirement is in conflict with (Rl). The strategy
used to resolve this conflict is discussed below.

This section discusses requirements for an IR  based on
our experience in the field of architectural recovery
[Gira97].  However, we believe that these requirements for
an IR are typical for many reverse engineering tasks. The
requirements can be divided in those that  are shared by IRS
for reverse engineering and IRS for compilers and addition-
al ones that go beyond those for compilers.

2.1. Common requirements

(Rl) The IR should be programming language indepen-
dent; that is it should abstract away from language spe-
cific syntax, so analysis can be applied onto different
languages of the same family (e.g., procedural) without
major modifications.

(R8) The IR should be able to represent a system made of
several programs. In this context, it should distinguish
two instances of the same variable (same name, declared
in the same file) when this file was linked to two differ-
ent programs. This is necessary, for example, while
investigating the interaction between these programs.

(R9) While compilers need to know all tiny details of a
program, for many maintenance tasks a rough overview
is sufficient; thus the IR should support different levels
of granularity from fine-grained to coarse-grained.

(RIO) When used in an interactive reverse engineering
environment, the IR should capture information pro-
vided by the user in addition to facts that are directly
derivable from source code as needed by a compiler.
This information takes the form of annotations (free
comments in natural language), attributes (structured
data), or assertions (predicates that the user guarantees to
hold during runtime).

(RI 1) It should be possible to save the IR. As opposed to
compilers, reverse engineering often involves user inter-
ventions and computational expensive analyses: so these
results should be preserved.

(R2) The semantics of the IR must be well-defined and it
must exactly describe the constructs of the modeled pro-
gramming languages; this is necessary for an exact anal-
ysis.

(R3) Traversals of the IR should be efficient; this is neces-
sary because analyses usually imply traversing the IR at
least once, in an iterative algorithm even many times.

(R4) The IR should be constructed efficiently. This prop-
erty is a necessary condition for an overall efficient anal-
ysis. It is required to handle large systems in a
reasonable time.

(R12) IRS for compilers consist only of programming lan-
guage constructs; in a reverse engineering environment
IRS must also capture higher level abstractions. For
example, cliche recognition may detect an abstract con-
cept stack in the source code consisting of a set of rou-
tines and a type; the concept and its connection to the
programming language constructs that make up this con-
cept should be represented by the IR. To be useful in
practice, it should be possible to add new abstract con-
cepts to the IR without invalidating all previous system
analyses.

(R5) Likewise, the IR should be linear in size to the length
of the source code. This property is particularly impor-
tant for global analyses of large programs.

(R6) The IR should allow efficient control and data flow
analysis.

2.2. Reverse Engineering Specific Requirements

While many requirements of an IR are shared between
reverse engineering tools and compilers, others are specific
to the reverse engineering context. The most important are

(R13) Not only does the IR have to have the ability to
specify higher concepts, it also must provide means to
express any relationships between these concepts. A
part-ofrelationship to describe hierarchical relationships
is one example, a communication relationship between
two subsystems in an architectural description is another.
The IR should also allow for attributing these relation-
ships.

(R14)  In a multi-user reverse engineering environment, we
have the need to allow each user to have his or her own
view of the system. Similarly, the IR should capture the
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results of analyses that compute alternatives which can
also be regarded as different views.

2.3. Requirements Discussion

Requirements about the efficiency of construction and
traversal of an IR (R3,R4,R5)  are important for compilers.
They are even more important for reverse engineering, be-
cause, as opposed to compilers that usually analyze indi-
vidual modules and generate code for them separately,
reverse engineering generally involves the analysis of the
system as a whole. Therefore, scalability becomes a key is-
sue. This is even more true in an interactive environment.

If source code of different programming languages has
to be analyzed, the intermediate representation must be
general enough to cover these different languages (RI).
Otherwise, i.e., in the case of different representations for
different languages, specific analyses would have to be
written for each language. This would imply duplication of
effort and major maintenance problems.

CBMS: An Example of Reverse Engineering Needs
Code base management systems (CBMS) are reverse

engineering environments that store, retrieve, analyze, and
visualize information on software artifacts. CBMS offer a
query language to the contents of the database and are open
in the sense that tools can be plugged to gather information
or to add information to the database. The contents of the
database is the source code, its change history, results of
previous analyses, further user documentation, and other
artifacts. At the core of the database, the source code is rep-
resented in a way that allows efficient analyses.

IRS usually need much more disk space than the source
code. With an efficient way to construct the IR, regenerat-
ing the IR from the source code each time becomes an ap-
pealing alternative.This way, the regenerated IR is always
consistent with the source code and suitable for an interac-
tive CBMS which allows code modifications. This is an
important factor in a CBMS that administrates a change
history - instead of saving the IR for each revision of the
source code, the source code of the subject revision can be
checked out and the IR can quickly be generated for it.

One could argue that revisions should be a concept
supported by the IR. This way, all revisions of the system
would be available at the same time, which would ease
analyses that compare different revisions, a frequent main-
tenance activity. On the other hand, as a consequence, the
IR would contain information that is only relevant to
former revisions. This and the need for each piece of infor-
mation in the IR (at least of the not directly derivable part)
to maintain its own revision information would cause ex-
plosive growth of the IR. That is why we consider admin-
istration of revisions a task of the CBMS. For each revision

of the source code, the CBMS should save the correspond-
ing non-derivable part of the IR (or only the delta of revi-
sions) and retrieve it when it is necessary to compare
different revisions. For this comparison, it is sufficient for
the IR to support different views (R14).

3. Proposed Intermediate Representations

There are many proposals of intermediate representa-
tions in the compiler literature. Due to lack of space, this
paper discusses only those which form the basis for our
new intermediate representation. A reader interested in oth-
er existing IRS could consult [Aho86,  Ba1190]. This section
presents abstract syntax trees, gated single assignment
form, and entity-relationship graphs. It then reports which
of these representations tYfil1 the requirements presented
in the previous sections.

3.1. Abstract Syntax Trees

For the semantic analysis, compilers often construct an
abstract syntax tree (AST) whose nodes are programming
language constructs and whose edges express the hierarchi-
cal relation between these constructs. The structure of an
AST is basically a simplification of the underlying gram-
mar of the programming language, e.g., by generalization
or by suppressing chain mles. Attributed ASTs  have simple
attributes, such as the level of scope, and further edges,
such as links from each use of an identifier to its declara-
tion. Edges that make up the tree structure of the AST are
called syntactic edges and the additional edges are called
semantic edges. The semantic edges extend the AST from
a tree to a general directed (possibly cyclic) graph.

Usually, each programming language has its own spe-
cific AST structure because an AST is more or less a one-
to-one representation of the source code (R7). However,
this structure can be generalized so that it can be used to
represent programs of different languages (RI). How this
can be done without inflating the IR with separate con-
structs for each individual programming language and yet
still fulfilling (Rl) is discussed in Section 4.

Following the syntactic edges of an AST allows for an
efficient top-down traversal (R3). Adding semantic edges
to an AST allows for alternative traversal strategies. For
example, in subtrees  for expressions, a parent edge to climb
the tree bottom-up is useful. The AST can efficiently be
built (R4) and is linear in the size of the program (R5).
ASTs  can easily be stored (Rl I),  but since they can quickly
be generated directly from the source code, this is often not
done.

The ASTs  of separate compilation units can be linked
together to form one system AST if a global analysis is re-
quired. This can also be done for the source code of sys-
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terns consisting of several programs. In this case, we only
have to keep apart different main programs and different
incarnations of globally declared variables (R8).

Beyond syntactic and semantic edges and simple at-
tributes in an attributed AST that are directly derived from
the source code, each node could also be annotated by the
user (RlO).

Structured control flow is represented in ASTs  by syn-
tactic edges and the type of nodes; e.g., the syntactic edges
for the then and else parts of an if node point to the next
statement to be executed; once either the then or the else
branch has been executed, execution continues at the next
statement after the if node. Additional semantic edges for
gotos  that point to the corresponding label, may denote un-
structured control flow. Restricted data flow information is
only implicitly available by assignment and expression
nodes. However, for a variable at a certain point in the pro-
gram, there is no information available where its value was
last set.

Since ASTs  are a one-to-one representation of the
source code, they offer only one, very detailed level of
granularity. They neither offer means to express more ab-
stract concepts than programming language constructs nor
do they provide additional relationships between these ab-
stract concepts. They do not offer different views either.

3.2. Gated Single Assignment Form

The Gated Single Assignment (GSA) form was intro-
duced by Ballance, Maccabe,  and Ottenstein [Ba1190]. It is
based on the Static Single Assignment (SSA) form.

SSA was introduced by Cytron et al. [Cytr9  l] to speed
up data flow analyses by providing explicit links between
variable references and the definitions that can reach them.
This is enabled by the addition of +-functions that merge
multiple definitions converging at places where different
control flow paths merge, thereby creating a unique defmi-
tion for each use of a variable.

GSA extends SSA by using different types of gating
functions instead of +fi,mctions  according to the nature of
the control flow join: y-, p- and n-functions are used at the
join point after an ifbranch statement, at the head of a loop,
and at the exit of a loop, respectively. Each gating function
contains a predicate specifying the condition under which
the node is reached by a specific branch of control. GSA
form allows for efficient predicated data flow analyses.

Strictly speaking, SSA (GSA, respectively) is not an
intermediate representations on its own. It is rather a means
of extending an existing intermediate representation to rep-
resent definitions and uses. Often, control flow graphs are
extended with SSA information [Wegm91].  A more com-
pact representation in conjunction with SSA is the Value
Graph [Alpe98].  However, the Value Graph does not com-

pletely represent the original source program. In Section 4,
we will show how ASTs  can be enhanced by GSA.

The GSA is language independent and its semantics is
well-defmed. An intermediate representation with GSA of-
fers an efficient traversal by def-use links. While a pure
AST allows only for top-down traversal, an AST enhanced
by GSA offers the possibility of following links of a defi-
nition to its uses and vice versa. GSA allows sparse travers-
al and thereby enables efficient data flow analysis.

SSA can be built in linear time with respect to the
number of edges [Sree94].  SSA can then be converted into
GSA. Peng Tu developed an efficient way to construct
GSA directly in almost  linear time for structured programs
[Tu95].  For certain kinds of n nested loo

if
s,  the space need-

ed for SSA may be in the range of O(n ).  However, mea-
surements for typical programs indicate that SSA is linear
to the program size [Cytr9  11.

3.3. Entity-Relationship Graph

ASTs  and GSA form provide very fine-grained  infor-
mation. A more global picture of the system can be repre-
sented by an Entity-Relationship Graph (ERG). An ERG is
basically a general entity relationship model to represent
knowledge on a given program. The entities of an ERG are
programming language concepts of interest, such as func-
tions, types, and variables, but also more abstract concepts,
such as abstract data types, components, or subsystems.
The entities are represented as nodes in an ERG and rela-
tionships among these concepts are represented as edges.
Examples of relationships range from those that can direct-
ly be derived from source code, such as function calls, to
more abstract relationships, such as the communication be-
tween a client and a server.

A Resource Flow Graph (RFG) is an example of a con-
crete instantiation of the ERG. It consists of functions,
types, and variables together with call, data, and type rela-
tionships among them that can directly be derived from
source code. RFGs  are used in approaches to detect sub-
systems [Mtill90]  and abstract data types [Gira97].  In both
applications, higher abstractions are added to those directly
derived from source code: the concepts of subsystems and
abstract data types.

In the context of our work, we also added nodes and
edges for components (tasks, filters, client/server, etc.) and
connectors (pipes, remote procedure calls, shared memory,
etc.) to describe the architecture of a system.

3.4. Summary

Table 1 reports to what extent each of the representa-
tions presented so far fulfills the requirements presented in
Section 2. In this table, a fulfilled requirement is marked
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with a “+”  and an unfulfilled requirement is marked with a
“ “_ . A ‘(...” means that the requirement is not completely
fulfilled. Some of the entries for GSA are blank, because
the question whether these requirements are mlfilled can
only be answered in the light of a real intermediate repre-
sentation that is enhanced by GSA. The additional IRS in
Table 1 will be explained in Section 4.

Table 1. Properties of intermediate representations

efficient abs t rac t

Req. 123456789;;;;;

A S T - ++++-  ++-  ++-  - -

GSA +++--+

ERG i i + + + - - + + + + + + -

GASTIGSA + + + - -+++-  ++- - -

ERGV + + + + + - - + + + + + + +

IIR + + + - - + + + + + + + + +

None of the intermediate representations discussed so
far fulfills all needed requirements. This is in part due to R9
which requires to support fine-grained as well as coarse-
grained analyses: an AST extended with GSA form is in-
tended for fine-grained analyses only and ERGS  support
only coarse-grained analyses. An obvious solution is to in-
tegrate all these different intermediate representations to
get the advantages of each of them (N.B.  this integration
also inherits the disadvantage of GSA form in the case of
R4 and R5).  Yet, this integration alone does not meet R14
(support for different views).

4. Integrated intermediate representation IIR

The proposed intermediate representation (IIR) is an
integration of existing intermediate representations con-
sisting of two levels: The lower level is a Generalized Ab-
stract Syntax Tree (GAST) extended with GSA to allow
fcr efficient data flow analyses and other fine-grained anal-
yses. The higher level is an ERG that allows coarse-grained
analyses and supports adding higher concepts. The AST is
general in the sense that it can uniformly represent pro-
grams written in different languages. To mltill the yet un-
fulfilled requirement (R14),  we extended the ERG to
support different views.

Figure 1. Concept flow towards IIR

Figure 1 provides art overall view on how the interme-
diate representations discussed in Section 3 were extended
and combined to IIR.

The lower level of the intermediate representation is
constructed in two steps. First the GAST is generated di-
rectly from source code by a language-specific frontend,
and then the GSA form is computed (see Figure 2). Based
on this information, the basic ERG is derived. It consists
solely of entities and relationships explicitly present in the
source code.

( ERG construction)

Figure 2. Construction of intermediate representation.
Higher abstractions, attributes, annotations, and asser-

tions are then added to thle  higher level (ERG) by the users
or by further analyses operating on the IIR. Note that infor-
mation is only added to the ERG part. Thus the GAST/
GSA part can always be m-generated; is it supposed to rep-
resent all the source code and nothing but the source code.

The two levels are really kept distinct, i.e., a node in
the ERG that has a direct correspondence in the GAST ap-
pears twice: in the GAST and in the  ERG. However, the
two nodes are linked in both directions. This allows for
switching from an ERG node to the corresponding GAST
node to get detailed data flow information and back from a
GAST node to an ERG node to get user annotations, for ex-
ample, and still saves analyses that are only based on one
part of the intermediate representation from loading the
other part. This is an important factor for coarse-grained
global analyses solely based on the ERG since ASTs  need
a lot of space. By adding a mediator layer in-between the
two levels instead of having immediate accesses between
the two levels, it is possible to add a loading on-demand ca-
pability: only when a GAST node is needed, the GAST of
its compilation unit is loaded into memory.

The rest of this section discusses the general design
ideas of the GAST and EIRG implementation.

4.1. GAST with GSA

The GAST is designed for representing all constructs
of the programming language C and for a subset of Ada,
namely its sequential and procedural part. To keep the
number of distinct constructs in the intermediate represen-
tation small in order to save analyses from distinguishing
many different cases, one design principle was to provide
simple constructs that can be combined to represent any of
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the languages constructs [Wiirt96].  This can be illustrated
with the example of while loops. Instead of having an ex-
plicit while loop with an associated condition, a while loop
can be represented by using a general loop, an if-then-else,
and an exit statement to quit the loop as illustrated by the
two equivalent programs in Figure 3 (a) and (b).

while P loop
A;

end loop;

(4

loop
if P then

A;
e lse

exit;
end if;

end loop;

(3)

Figure 3. Equivalent loops.

(4 09
+ syntactical edges --b semantic edges

Figure 4. GASTs for loops.

The graph representation of the loop statement in
Figure 3b is shown in Figure 4a. This mapping has the dis-
advantage that the organization of the original source code
gets lost. To avoid this, a while node class is derived from
the general loop node class with an additional semantic at-
pibute  that points to the condition of the while loop
(Figure 4b). Now, since while is a loop and the additional
condition attribute is only semantic, the analysis sees the
loop in Figure 4a but the source code is still appropriately
represented by the graph in Figure 4b. The same design
principle is applied to capture the semantics of similar yet
different constructs in C and Ada, such as the for-loop.  In
Ada, start and end value of afor-loop  are mandatory. Both
expressions are evaluated only once. The step value is 1 im-
plicitly. In C, all these parts are optional and can be any ex-
pression (which includes assignments in C). The
initialization is executed once, the expressions of the con-
dition and the step are executed for each iteration. Despite
these differences, both loops can be represented in a uni-
form manner by means of the intermediate representation.
In the case of Ada, the implicit code of the for loop is added
to the intermediate representation. Figure 5 illustrates this
(the intermediate form is written out as an equivalent Ada
program for readability).

In the case of C, the same structure can be chosen (but
E2 has to be executed in each iteration and is therefore
moved into the body). A continue within the body S of the

original&r-loop is represented by a continue node (derived
from goto  statements) whose target is the label c in the code
in Figure 5.

To preserve the original source, the loop is actually
represented by a for-loop node (derived from the general
loop construct) in the intermediate form. Similar to the ex-
ample of the while-loop above, a&r-loop  node has three
additional semantic attributes for the respective expres-
sions of the loop: start, end, and step expression. Semantic
edges denote only the source code organization of the for-
loop; the actual flow of execution is explicitly and sepa-
rately represented. Otherwise we would have to distinguish
between an Ada and a C for-loop node since the two lan-
guages have different interpretations of afir-loop.

Ada for-loop C for-loop
for I in El ..E2  loop S; end loop; for (El ; E2; E3) S;

Intermediate form: Intermediate form:
I := El; bound := E2; El;
loop loop

if I <=  bound then if E2 then

?=I+,;
s;

<<label  c>>E3;
e l se e l se

exit; exit;
end if; end if;

end loop; end loop;

Figure 5. Unified loop representation.
C has many idiosyncrasies, such as conditional values,

assignment expressions, post increment operators, unre-
strictedgotos, etc. Nevertheless, all of them are represented
by the GAST following the above design principles. The
interested reader is referred to [Rohr98]  for details.

The GAST has been implemented in Ada95, exten-
sively using its object-oriented facilities. Altogether there
are about 170 different GAST node types, many of which
are considered abstract.

4.2. ERG with Views

For coarse-grained analyses, we use the ERG as de-
scribed in Section 3.3. However, we added views to the
ERG to represent different users’ perspectives as well as al-
ternative results of different analyses. Views can also be
used to pass only the relevant part of a global graph to an
analysis in a uniform and efficient way.

A view is a subgraph  of the ERG, i.e., a graph consist-
ing of the subset of the nodes and the edges such that both
target and source of any edge in the view belong to the
view. Views are a convenient modeling means in different
contexts as shown by the following sections.

Views to represent different aspects of the source code.
Call graphs, type graphs, and variable reference graphs

are common concepts in reverse engineering. Table 2
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shows what these graphs model. Each of them is a view of
entities and relationships directly derivable from source
code. There are analyses that are interested only in one of
these graphs. A dominator analysis, for example, would
compute the dominator tree for a given call graph. Like-
wise in code visualization, a user might want to see only the
types to understand class hierarchies. However, in a
CBMS, in which we have a set of different tools for differ-
ent purposes, we are generally interested in all these
graphs. Instead of representing these graphs individually,
we keep all the information that we extract from source
code together in one graph and represent these subgraphs
as different views. All the nodes and edges in these views
can be extracted from the general graph immediately. This
not only increases efficiency but also avoids change anom-
alies caused by otherwise redundant information. A rou-
tine, for example, is part of both the call graph and the
variable reference graph and is still contained only once in
the general graph.

Table 2. Common graphs in reverse engineering.

Graph N o d e s

call graph routines

type  graph types

Edges

call relationship
part-of, is-a, or subtype
relationships

variable
reference graph

routines,
variables

set and use
relationships

Views as a uniform input and output of analyses.
Often, analyses should operate on part of the graph only.
For example, a user may want to see the dominance tree
just for a subsystem. It is obvious that a reusable algorithm
must be parameterized by the relevant nodes and edges.
Views are a means to express which nodes and edges
should be considered by the analysis and can act as param-
eter to each analysis that operates on the ERG. The analy-
sis then can iterate over the nodes and edges of the given
view. The result of an analysis can also be represented as a
view. This way, we can keep track which information was
added by which analysis. Analyses that use views and
analyses that produce views can be plugged together.

Views to represent intermediate results. If analyses are
computational expensive, intermediate results should be
kept if more than one later analysis needs them. This is par-
ticularly true in situations when alternative analyses are all
built on the results of a previous analysis. Views can be
used to save intermediate results. Analyses can then be
combined in the form of a network as illustrated in
Figure 6.

Figure 6. A network of analyses connected by views.

Views to represent alternative results. If different analy-
ses are used that yield alternative results for the same prob-
lem, one has to save all the results and still has to be able to
distinguish them. This can be achieved by representing the
results as different views. Likewise, if users have to vali-
date results of the same analysis, different users can have
different opinions. All their decisions should be represent-
ed distinctly; this can be achieved by different views. By
computing the difference of alternative views, similarities
and differences can be revealed.

5. Technical Details

Although the effcie:nt  implementation of graph data
structures has been discussed extensively in the literature,
this section gives insights into the implementation we have
chosen for the ERG with views because the addition of
views poses additional restrictions on the implementation.

The basic assumptions of our implementation are as
follows:
l The average number of outgoing edges of a node is

relatively small, thus the graph is very sparse.
l Nodes and edges are rarely added and even less rarely

removed. Fast access is a more important factor than
efficient addition or removal.

l The number of distinct views is relatively small.

5.1. ERG representat ion

The ERG is a very sparse graph and is therefore imple-
mented by adjacency lists. Each node has a list of its suc-
cessors and a list of its predecessors. This redundant
information is an optimization because we need fast access
not only to the successors but also to the predecessors of a
node. The node type is an abstract class of which concrete
entities, such as variables and routines, with additional at-
tributes can be derived. This way the ERG is easy to ex-
tend.

Edges are first order objects, i.e., they can have their
own attributes; that is why they cannot be implicitly repre-
sented as simple links between nodes. In analogy to ERG
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nodes, the abstract edge class is extended by concrete de-
rived classes with additional attributes. Each edge has at
least two attributes: its source and target.

Nodes and edges are saved in two separate dynamic ta-
bles. A node table is necessary because we can have nodes
that are not successor or predecessor to any other node and
thus cannot be attached ;o the rest of the graph. The edge
table is needed because of the view implementation strate-
gy discussed below.

Figure 7 shows the representation of two nodes a and
b and an edge from a to b in the view v. The meaning of the
view information is discussed in the next section.

view info node table edge table view info

Figure 7. ERG implementation.

5.2. View implementation

Views are conceptually sets of nodes and edges and
they could also be represented as such. That is, we could
implement them on top of the ERG representation, hence
the ERG would not know about views. However, this caus-
es inconsistencies when a node is removed that is designat-
ed by a view. That is why views are an integral part of the
ERG in our implementation: It allows for removing a node
from all views when this node is removed from the ERG.

Sets. Within the ERG there are several ways to implement
views. An explicit set representation, e.g., using a linked
list, has the disadvantage that the time complexity for
checking whether a given entity is in a view is O(nv)  for
nodes and O(eV)  for edges (let ny  be the number of nodes
and eV the number of edges in the view). This could be
improved by using a sorted tree or a hash list but these rep-
resentations have an additional space overhead and still do
not achieve a constant lookup time.

Bitvectors. Views could be implemented as bitvectors. A
bit in this vector indicates whether an edge or node is
present in a view. This optimizes the access time to the
view information for each entity to O(1). The needed
space is Sv(n,  e) = (n + e) x 1 [bits] where n is the num-

ber of nodes and e is the number of edges in the ERG.
Note that the space for bitvectors depends on the total
number of nodes and edges of the ERG, whereas for sets,
the space depends only on the view. For views that are not
very sparse, bitvectors use less space than explicit repre-
sentations and offer more efficient data access.

The disadvantage of bitvectors is that each bitvector
has to be adjusted when entities are added to or removed
from the ERG to allow for an efficient implementation of
the union of two views. This makes adding or removing
nodes very expensive operations.

Integrated view information. The implementation we
chose is based on the idea of bitvectors. However, instead
of keeping the view information separate, we integrate the
view information with the node and edge tables. A table
entry is two-fold: the attributes of the  node or edge and its
view information given as an array of bits A where A(i) = 1
indicates that the respective node or edge is in view i. This
achieves the same space and time efficiency as the bitvec-
tor implementation but adding or removing nodes or edges
entails only changing one entry of the node or edge table.
The prize we pay for these advantages is that we restrict
the number of possible views. However, we expect a rela-
tively small number of views and the re-use of intermedi-
ate views.

Compared to the set implementation of views, itera-
tion over all nodes of a view is less efficient. It is always
O(n) where n is the number of nodes in the graph whereas
for views as sets, iteration depends only on the number of
nodes in the view. On the other hand, traversals through an
ERG (that is, starting with a given node and following all
edges in the view) is more efficient when the view informa-
tion is stored in the table (or in a bitvector) because the test
whether a node or edge is in the view takes only 0( 1) time.

Another advantage of this implementation strategy is
that the union of views can be implemented efficiently: The
view identifier for view i is represented by a bit mask Mi
whose bit i is set (all other bits are 0). To check whether
node n is in view i, we simply have to test B(n) AND Mi  for
a non-zero value, where B(n) is the bit array of node n. The
same test can be used to check whether a node is in the
union of two views by using the bitwise  OR of their view
identifiers instead of MC

6. Examples of the application of IIR

To illustrate the usefulness of our intermediate repre-
sentation, and in particular of the concepts of views, this
section shows how the IIR would support Kazman’s model
of architecture recovery and how IIR was used in our own
ADT recovery work.
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6.1. IIR meets horseshoe

Kazman et al. [Kazm98]  present a framework that can
accommodate analysis and transformation processes in ar-
chitecture recovery. This framework is called the horse-
shoe model and it consists of four different levels:

source level: source code in textual representation
code structure level: the AST enriched with control
and data flow information
function level: relationships among functions, data,
and files, providing a global system overview
architectural level: architectural elements, e.g., con-
nectors and components
Two out of these four levels directly correspond to lev-

els in the IIR: The code structure level is represented in the
GAST and the function level is represented in the ERG.

The source level of the IIR corresponds to the source
files of the  system (possibly revision controlled or stored in
a CBMS). They are not explicitly stored as part of the IIR,
but, instead, each element in the GAST and in the ERG
contains a mapping to its position in the source code.

In contrast to the horseshoe model, IIR does not distin-
guish between the function level and the architectural level
but represents both in the ERG because the latter can ac-
commodate both levels using the same mechanism while
allowing explicit representations of the mappings between
them.

Code structure level. Large systems often consist of com-
ponents written in different programming languages. To
overcome this diversity present at the source code level,
these elements should be uniformly represented at the code
structure level. This is what the generalized abstract syntax
tree representation, GAST, was designed for. Likewise,
data and control flow information are an integral part of
GAST (the construction of the GSA is still ongoing work).

Functional and architectural levels. As mentioned by
Kazman et al., an intermediate representation for architec-
tural reengineering must be suitable for representing con-
cepts at all different levels of abstraction. Among these
levels, the IR must allow for drawing explicit and seamless
mappings. IIR supports both of these needs and offers ad-
ditional benefits by virtue of its view mechanism that can
help represent, compare, and manipulate multiple levels of
abstraction, complementary analyses, and different per-
spectives associated with various tasks.

Furthermore, the view mechanism can be used to cap-
ture alternatives caused by the diverging opinions of ex-
perts on debatable cases. E.g., in the context of abstract
data type detection, there are cases where it is not clear
whether a given routine belongs to an abstract data type.

The view mechanism allows to compare these alternatives,
revealing the differences and commonalities.

By capturing specifilc  versions of a system into views,
the evolution of the systelm  can be monitored and analyzed.

Finally, in a top-down/bottom-up architecture recov-
ery process, two more kinds of views are important: We
want both  the expected architecture and the architecture as
built be specified in order to draw a mapping between
them.

Extensible abstractions,, The ERG allows for adding new
concepts to the system abstraction that go beyond the code
level elements. In fact, we have added connectors (pipes,
RPC, shared memory, etc.) and components (client/server,
filter, tasks, etc.) to our implementation of the ERG. This
allows for a static view of the architecture. Static and tem-
poral features, as Kazman et al. request, could easily be
added as attributes of ERG nodes and edges.

Complementary specifications. A complete architectural
description requires a specification of constraints and dy-
namic aspects, too. IIR does not have immediate expressive
means for such specificaltions.  Specific specification lan-
guages [Alle94]  are better  suited to describe these aspects
on top of IIR. E.g., static constraints, such as whether two
components may interact with each other, can then be
checked by investigating the actual communication chan-
nels in the IIR. Likewise., path expressions extracted from
the IIR could be checked against protocol specifications of
connectors. Many of these verifications need human-com-
puter interaction since they are generally undecideable.
This enforces the need for an intermediate representation
such as IIR that captures human assertions.

6.2. Experience with ADT recovery using IIR

In the context of our work of architectural recovery,
the IIR is used to detect atomic architecture components,
namely abstract data types (ADT) and state encapsulations
[Gira97],  and subsystems;. The use of views facilitated the
management of different user perspectives as well as the
manipulation of the results of different analyses.

Multiple analyses have been proposed to recognize
ADTs.  When analyzing a system, the user can select some
of them according to his experience and the  system’s char-
acteristics. The result of each selected analysis is stored in
a view that is presented to the user for validation. The user
can indicate that he/she wants to exclude some entities
from ADTs  or that certain entities must appear together.
Once again, each of these inputs are represented in a dis-
tinct view. Then, these views can be combined appropriate-
ly to form the input of the next iteration of the selected
analysis.
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7. Conclusions

In this paper, we introduced the requirements of inter-
mediate representations (IR) for reverse engineering. We
presented how they resemble those of IRS for optimizing
compilers and how they differ. We then gave an overview
of some existent IRS (AST, gated single assignment form,
and entity relationship graphs) and rated them with respect
to these requirements. We then showed how most of these
requirements can be met by integrating and extending exis-
tent IRS. These extensions include a generalized AST and
a mechanism supporting multiple views on programs. After
giving insights on efficient implementation of the proposed
IR, we illustrated its usefulness in the context of our work
on ADT recovery and by discussing how it can support the
horseshoe model proposed by Kazman et al.
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