
Software Visualization for Reverse Engineering

Rainer Koschke

University of Stuttgart,
Breitwiesenstr. 20-22,
70565 Stuttgart, Germany
koschke@informatik.uni-stuttgart.de,
http://www.informatik.uni-stuttgart/ifi/ps/rainer

Abstract.

This article describes the Bauhaus tool suite as a concrete example for software visua-
lization in reverse engineering, re-engineering, and software maintenance. Results from
a recent survey on software visualization in these domains are reported. According to
this survey, Bauhaus can indeed be considered a typical representative of these domains
regarding the way software artifacts are visualized. Specific requirements for software
visualizations are drawn from both the specific example and the survey.

1 Introduction

Reverse engineering is the process of analyzing a subject system to identify
the system’s components and their relationships and create representation of
the system in another form or at a higher level of abstraction, whereas re-
engineering is the examination and alteration of a subject system to recon-
stitute it in a new form and the subsequent implementation of the new form.
Re-engineering generally includes some form of reverse engineering (to achieve
a more abstract description) followed by some form of forward engineering or
restructuring [Chikofsky & Cross, 1990].

Research in reverse engineering focuses on extracting, storing, presenting,
and browsing information, reducing the amount of unnecessary information for
a particular task, analyzing the extracted data and to build useful abstractions
of the system under analysis. Because reverse engineering is generally a highly
interactive and incremental process, in which results of automatic analyses need
to be presented to the reverse engineer that are then validated, augmented, and
fed back to following automatic analyses, software visualization plays a key role
in reverse engineering. Presenting the data to the reverse engineer in a suitable
manner is a main issue here and the reverse engineering research community
struggles with finding solutions to this problem.

In the next section, the Bauhaus tool suite is described as one concrete ex-
ample of software visualization for reverse engineering. The example is not a
particularly advanced use of software visualization. As a matter of fact, I rather

S. Diehl (Ed.): Software Visualization, LNCS 2269, pp. 138–150, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



Software Visualization for Reverse Engineering 139

believe that there is still enough room for improvements. The example was cho-
sen because it can be considered typical for the domain according to a survey
that I recently conducted [Koschke, 2001]. Bauhaus is rather an example for the
state of the practice than for the state of the art with respect to its software
visualization capability. With respect to its analytical reverse engineering capa-
bilities, it is more advanced. Yet, its exact analyses are beyond the scope of this
article. The results of the more general survey are presented in Section 3.

2 Architecture Recovery in Bauhaus

The Bauhaus project researches reverse engineering techniques to help program
understanding of legacy code [Bauhaus, 2001]. Bauhaus has support for frequent
maintenance tasks that involve program-understanding-in-the-small (points-to
and side effect analyses, detection of uses of uninitialized variables and dead code,
program slicing, etc.) and re-engineering tasks that require knowledge of the sy-
stem’s architecture and hence are more oriented toward program-understanding-
in-the-large.

This section describes the software visualization in Bauhaus. However, we
will start with some background information on reverse engineering.

2.1 Reverse Engineering Background

Analyzing a system, we can roughly distinguish three different levels of abstrac-
tion:

– The lower level represents the source code in a way that contains all neces-
sary details of syntactic, semantic, control and data flow information.

– The middle level only contains global information that can be automatically
extracted from source code, like global variables, functions, user-defined ty-
pes and their relationships. The middle level is the seam between the lower
level and the next upper level, namely, the architectural level.

– The architectural level contains architectural information.

Bauhaus seeks to recover architectural descriptions from source code. Ac-
cording to the IEEE Standard on Recommended Practice for Architectural De-
scription of Software-Intensive Systems [IEEE-Std-1471-2000], an architectural
description is a collection of products to document an architecture. An architec-
ture is the fundamental organization of a system embodied in its components,
their relationships to each other and to the environment, and the principles gui-
ding its design and evolution. A view is a representation of a whole system from
the perspective of a related set of concerns. A viewpoint is a specification of the
conventions for constructing and using a view. A viewpoint acts as a pattern
or template from which to develop individual views by establishing the purpo-
ses and audience for a view and the techniques for its creation and analysis
[IEEE-Std-1471-2000].



140 R. Koschke

2.2 Extracted Artifacts

Information about the system is exclusively extracted from the source code in
Bauhaus – because this is the only reliable source of information – and represen-
ted at each level as graphs with varying granularity. The maintenance analyses
are based on information at the lower level only and are fully automatic. Their
results are generally represented as links to the original source code. On the other
hand, architecture recovery with Bauhaus is a semi-automatic process that in-
volves the Bauhaus user (presumably a software maintainer or auditor). Due
to the highly interactive nature of this process, software visualization is an im-
portant part. While Bauhaus uses marked-up text and hypertext for the results
of the more source-code oriented maintenance analyses at the lower level, the
architecture recovery tasks have higher demands on software visualization.

At the middle level, information extracted from the source code is represented
as a resource graph (RG) [Koschke, 2000]. The resource graph is a coarse-grained
intermediate representation that represents concrete as well as conceptual infor-
mation in form of entities and their relationships. Concrete information consti-
tutes a base view and is global information that can be directly extracted from
the source code, yet abstracts from a particular source language, such as call,
type, and use relations. The conceptual information is added by the Bauhaus
user based on results from automatic reverse engineering analyses. Currently,
the Bauhaus toolkit offers techniques for component and connector recovery. In
the following, we will focus on the component recovery part of Bauhaus. The
semi-automatic process of component recovery will be described in Section 2.4.

Entity

Composite

ModuleComponent
Global Declaration

Subprogram TypeObject

Variable Constant

Primitive

Record Component

Fig. 1. Entities of the Resource Graph

The entities of the RG are programming language constructs and recovered
abstract concepts. The entities, which are represented as nodes in the RG, are
shown by the UML inheritance model in Figure 1. Relationships are represented
as edges in the RG. Examples of relationships range from information that can be
directly extracted from the source code (e.g., function calls, variable references,
function signatures) – as shown in Figure 2 as base viewpoint – to more abstract
concepts (e.g., the conceptual component decomposition as shown in Figure 2).
The RG can be visualized and manipulated in Bauhaus with our extension of



Software Visualization for Reverse Engineering 141

the graph editor Rigi [Müller, 1992]. The RG is the shared knowledge base –
so-to-speak – between automatic analyses and the Bauhaus user.

Even though the RG is a coarse-grained representation of the system, the
RG gets large for large systems. Figure 3 shows the number of nodes and edges
in the RG that represent extracted information for five C systems (Concepts,
Aero, Bash, CVS, and Mosaic) in the range of 7 to 52 KLOC (thousand lines
of code). Interestingly enough, as Figure 3 shows, the RG size is not necessarily
a monotonic function of the program size in terms of commented lines of codes
(Figure 3 only contains the entities and relationships of the base viewpoint as
described in Figure 2). The RG for the system Aero, which has about 28 KLOC,
has more nodes and edges than the RG for the three larger systems (except
for the number of edges for the largest system, namely Mosaic). The number
of nodes per lines of code depends on the programming style, in particular the
number of lines of code per subprogram and the use of global variables. However,
the graph density in terms of number of edges per node seems to be a constant
factor of about four edges per node at the middle level.

Object

Subprogram Type

Record Component

*
*of type

*
*

call

*
1

enclosing *

1

enclosing
*

* references
* *

local object of type

* 0..1
return type* *

parameter of type

*

*

references

*

*
part type

*
*

same expression

*

0..1

of type

{OR}

*

*

actual parameter of

Module

Component

Primitive
* *

part of

*

*

part of

Primitive
* *

part of

Base Viewpoint:

Physical Module Viewpoint:

Conceptual Component Viewpoint:

Fig. 2. Base, Physical Module, and Conceptual Component Viewpoints

2.3 Recovered Conceptual Artifacts

One particularly developed part of Bauhaus supports component recovery for
procedural programming languages, specifically for C. Components are cohesive
groupings of related global declarations of subprograms, variables, and user-
defined types. The decomposition of the system into components is a structural
viewpoint of the conceptual architecture. Component views are needed for re-
modularization, migration to object-oriented languages, and program understan-
ding in general. The component view gives a maintainer a conceptual perspective
of the system and is in contrast to the physical module view that shows how the



142 R. Koschke

system is decomposed into physical modules (or files in the programming langu-
age C). The latter view can trivially be derived by looking at the existing files
that make up the system. However, the physical module view shows the system
as built and may not necessarily reflect how the decomposition of the system
should be decomposed into cohesive groupings. Due to ad-hoc maintenance tasks
the (originally well-designed) physical module decomposition may be deteriora-
ted, i.e., show high coupling between modules and low cohesion within modules.
Conceptual components, by definition, are always cohesive.

Figure 2 shows the description of the physical module view consisting of
modules, program primitives, and their part-of relationships and the conceptual
component view consisting of modules, program primitives, and their part-of
relationships. Note that components can be hierarchical whereas modules that
model C header (include files with suffix .h) and body files (that contain function
definitions with suffix .c) cannot contain other modules.

The process of recovering the component view is described in the following
section.

2.4 Component Recovery Process

Bauhaus supports an iterative semi-automatic method to detect components,
also known as logical modules or objects. The analysis cycle consists of the follo-
wing steps (see Figure 4) [Koschke, 2000]:

1. The Bauhaus user selects one ore more fully automatic techniques. Cur-
rently, 15 different techniques are available, many of them have additional
variants. The description of the techniques is beyond the scope of this article.
A detailed description can be found in [Koschke, 2000].

Fig. 3. Number of Nodes and Edges at the Middle Level



Software Visualization for Reverse Engineering 143

2. The selected techniques use as input the base view that contains the program
primitives and their relationships extracted from the system (see Figure 2)
and the so-called user view that contains the components that have been
found so far. In the beginning, the user view is empty.

3. Each analysis application yields one component view, which can be assessed
by certain metrics (e.g., number of elements, name similarities, cohesion,
etc.). Multiple component views of different analyses may be combined by
intersection, union, and difference based on fuzzy sets.

4. The resulting combined component view may then be validated by the user.
The user can reject components in part and as a whole and may add addi-
tional entities to existing components. Accepted components are moved to
the user view.

The user controls the detection process by selecting analyses and metrics and
by validating the candidates proposed by the automatic techniques. The task of
the computer comprises the automatic analyses, computation of the metrics for
the proposed candidates, presentation of the results, and bookkeeping of the user
decisions.

An analysis selected by the user takes into consideration the components
that were previously confirmed by the user (in the first iteration there are none).
Thus, the analyses are applied incrementally. In each iteration, the user selects
and combines different analyses to find components that could not be found by
previous analyses. The process ends when the found components are sufficient
for the task at hand or no further component can be found anymore. Each
intermediate and resulting view can be visualized as a graph as described in the
following section.

2.5 Software Visualization in Bauhaus

Suitable visualization is an important issue in the above process of architecture
recovery. The user should be able to quickly grasp the represented information.
Moreover, he or she should also be able to quickly derive other information that
might be needed, yet not forseen by our analyses. Hence, beyond pure visualiza-
tion, browsing capabilities for the large information space need to be offered,
too. Since our research focus in on the analytic parts of architecture recovery
rather than visualization or browsing of architectural views and developing an
own visualization and browsing tool is a major effort, we used and extended the
generic graph editor, Rigi, originally developed by Hausi Müller and his team at
the university of Victoria in Canada [Müller, 1992].

Rigi is an interactive, visual graph editor designed to help to better under-
stand and redocument software. The underlying multi-graph consists of typed
attributed nodes and directed edges. Special level edges allow for hierarchical
graphs. Rigi provides selection, filtering, and editing operations, dependency
and change impact reports, overview and projection perspectives, metrics for
cohesion and coupling, views to capture interesting perspectives, a scripting lan-
guage and command library, annotations of nodes and edges, and a customizable



144 R. Koschke

metric assessment

analysis
application

analysis
selection

view combination

validation

analyses

view 1 view 2 view n

view

user
view

base
view

C source code
extraction

Fig. 4. Process of Component Recovery in Bauhaus

user interface. Nodes may be linked to source positions and a user-defined text
viewer may be opened to show the source text when the user clicks on the node.
Rigi is adaptable to different languages and purposes.

Rigi also offers different automatic graph layouts. Only some of them are
built-in layouts, namely, those for trees and grids. For more advanced layouts,
Graphed is used as an external layouter for spring embedder and Sugiyama’s
layout [GraphEd]. Our group has integrated Graphlet as an additional external
layouter [Graphlet]. Tree layouts are used in Bauhaus/Rigi for the dominance
tree, which shows local functions in the call graph and subsystems in the de-
pendency graph, and for the result of hierarchical clustering techniques for com-
ponent recovery. Spring embedder and Sugiyama’s algorithm are used for call
graphs and type and reference relationships.

Figure 5 shows a few visualization examples with Bauhaus/Rigi. The left up-
per window shows all nodes and edges of the base view (the base view is described
in Figure 2) for a 7.5 KLOC system, overlapping each other. Obviously, this vi-
sualization is useless. In order to understand all the relationships that are there,
filtering and selection mechanisms are needed. The upper right window shows
the contents of a component that contains two types and eight subprograms.
The visualization immediately shows that three subprograms are connected to
both types and all others are connected to one type only. The lower left window
shows the result of a hierarchical clustering technique. The iterative hierarchical
clustering technique groups in each step the two most similar subtrees based on
a similarity metric in a bottom-up fashion. The visualization shows the order



Software Visualization for Reverse Engineering 145

of this clustering, i.e., the most similar entities can be found in lower subtrees.
The higher a subtree, the less similar are its elements. Each inner node (which
represents a grouping) is annotated with its similarity value. This visualization
is an important guidance for a user’s validation. The user can start at the leaves
and then climb up the tree until a grouping gets doubtful. In principal, the same
information could also be ”visualized” as a matrix of similarity values, but the
superiority of the visualization as tree is obvious. The visualization is even active
in the sense that a user can reject and accept groupings within the visualization
and obtain the source code of contained programming primitives by one mouse
click. The lower right window shows an example on how components can be
assessed with metrics. The metric value is expressed as the size of the nodes
that represent components. This way the relation between the components with
respect to the given metric is easy to grasp.

Fig. 5. Different Kinds of Visualization with Bauhaus/Rigi

The Bauhaus GUI, which is based on Rigi, has a few unpleasant properties.
It is relatively slow, which can cause noticeable waiting periods for large graphs
and hence sometimes disrupts the fluent use of the tool. Graphs with more than
500 nodes, graphs with multiple edges between the same nodes, and disconnec-
ted graphs cannot be automatically layouted due to limitations of the external
layouter Graphed. Graphlet does not have these principal restrictions, but it is



146 R. Koschke

much slower than Graphed and its layouts cannot be used for larger graphs in
an interactive application.

The visualization of nodes and edges is limited, too. All nodes have the same
shape of a rectangle. Semantics of nodes and edges is encoded by colors only,
making it difficult to distinguish nodes and edges if one has many different types.
Nodes have only two ports to which edges can be connected – one for incoming,
one for outgoing edges. If two nodes have multiple shared edges, edges lay on
top of each other. Edges are only straight lines and may not have bends, which
basically makes use of planar graph layouts impossible.

3 Software Visualization for Reverse Engineering in
General

Software visualization in Bauhaus is rather typical for the domain of reverse
engineering as can be seen by a survey recently conducted [Koschke, 2001]. This
section describes the findings of the survey.

The survey was conducted by way of a questionnaire sent via email to
researchers in the areas of software maintenance, reverse engineering, and re-
engineering. The list of researchers was compiled from several lists of attendees
and PC members of conferences related to these fields, namely, the Internatio-
nal Conference on Software Maintenance (ICSM), the Working Conference on
Reverse Engineering (WCRE), the International Workshop on Program Com-
prehension (IWPC), and the European Conference on Software Maintenance and
Re-engineering (CSMR). The list contained about 580 different email addresses.
The response rate of the survey was about 20 percent. Out of the 111 answers,
83 researchers confirmed that they are active researchers in the area of software
maintenance (absolute number: 56), reverse engineering (52), re-engineering (36),
metrics (25), and related domains (6), where multiple selections were possible.

Roman and Cox define program visualization as the mapping from pro-
grams to graphical representations [Roman & Cox, 1992]. The definition is ge-
neral enough that we can widen it to other kinds of software artifacts (including
programs). Consequently, we define software visualization as the mapping from
software to graphical representations. Different categories of software visualiza-
tion may be distinguished according to the following criteria with respect to this
mapping [Roman & Cox, 1992]:

– Scope: what aspect of the software is visualized?
– Abstraction: what kind of information is conveyed by the visualization?
– Specification Method: how is the visualization constructed?
– Technique: how is the graphical representation used to convey information?

The survey on software visualization in the area of software maintenance,
reverse engineering, and re-engineering has shown that the scope of the visua-
lization is quite diverse [Koschke, 2001]. It ranges from module and subsystem
dependencies, call graphs, object models, software architectures, web artifacts,



Software Visualization for Reverse Engineering 147

semantic nets and ontologies, control and data flow, database schemas, directory
structures to source text.

In terms of Roman and Cox’s taxonomy, the abstraction mechanism embo-
died in common reverse engineering tools is usually a structural representation
that is obtained by concealing or encapsulating some of the details associated
with the software or its execution and using a direct representation of the re-
maining information [Roman & Cox, 1992]. Graphs are typically used to depict
program structures, dependencies, control and data flow. The information pre-
sented to the viewer is present in the program, although simply obscured by
details. The representation simply conveys the information in a more economi-
cal way by suppressing aspects not relevant to the viewer. For instance, a call
graph shows aspects of the software’s global control structure, but at the same
time it suppresses detailed aspects of the call sites, like the conditions that must
hold for the calls to happen and the exact number and order of multiple calls in
the same function body.

The specification method is generally predefined, i.e., the viewer cannot really
influence the way the information is presented. Many systems allow the viewer to
specify colors or shapes for the visualization or select different kinds of automatic
graph layouts, but the principle way of visualizing is generally fixed.

The techniques most maintenance, reverse engineering, and re-engineering
tools use to visualize information are centered around graphs and text, as shown
by the recent survey [Koschke, 2001]. Among the selected representations, graphs
are used in 52% of the cases (many of them are hierarchical graphs). In 18% of the
cases, UML diagrams are used. Text and hypertext are used in 18% of the cases,
but we may assume that a textual representation is actually much more often
used than responded – many people do not perceive text as a way of software
visualization. Other, less frequently used ways of representation are scatter plots,
charts, process flows, database models, and tables.

Animation is rarely used. Only 12.5% of the respondents said that they are
using animated representations. Interestingly enough, 40% do believe that ani-
mation is useful (in particular for dynamic information) and 34% responded that
it might be useful – whereas only 15% believe it is not useful at all (11% did not
answer the question).

Since graphs are the dominant way of visualization, the question is raised
whether automatic graph layout algorithms are used. As a matter of fact, 71%
of the respondents use automatic graph layouters (12% did not answer the que-
stion). Among these, surprisingly many have implemented their own graph layout
algorithms (28%). Only 41% use the readily available non-commercial or com-
mercial graph layout packages (31% did not answer the question). The most fre-
quently used layout package for graphs is the GraphViz system by AT&T (12 in
absolute numbers) [GraphViz]. GraphEd [GraphEd] and its successor, Graphlet
[Graphlet], together amount to 7 users. Another 9 use commercial UML tools
for rendering UML models, like Rational Rose or Together. VCG is used by 5
[VCG], whereas the commercial layout package by Tom Sawyer Software is used
by 2. Three people are using Rigi (these people also use the integrated GraphEd



148 R. Koschke

implicitly; the number of users given for GraphEd includes the Rigi users). The
remaining 10 people use other packages such as Java2D, Java3D, Microsoft Visio,
daVinci, and others.

The most frequently used class of layout algorithms is those for trees (10 in
absolute numbers); 9 people use a Sugiyama algorithm, and 7 a spring embedder.
Only 2 people use planar graph layout algorithms. The remaining 8 use other, less
known layouts like Tunkelang, Minbackward, Barymedian, Manhattan Edges, X-
Dags, SequoiaView, and others.

The encouraging message for researchers in the area of software visualization
is that 40% of the interviewed people believe software visualization is absolutely
necessary for software maintenance, reverse engineering, and re-engineering and
still 42% think software visualization is important but not critical. 7% think that
it is at least relevant and 6% that they can do without but it is nice to have.
Only 1% (actually, a single person) believes software visualization is not an issue
at all (4% did not answer the question).

Even though most people acknowledge the importance of software visualiza-
tion, relatively few people consider it their primary research (11%) or at least
a substantial part of their research (18%). Many people are doing research in
software visualization every now and then (20%). The relative majority is prima-
rily using or integrating existing software visualization tools developed by others
(33%). 11% do not deal with software visualization at all. 7% did not answer the
question.

4 Conclusion

We conclude with listing problems of software visualization for software mainte-
nance, reverse engineering, and re-engineering drawn from our own experience
in Bauhaus and the survey. I do not think that they are all specific to the men-
tioned domains, but will arise for all domains in which large and semantically
rich information spaces are to be visualized.
Semantics. Graphs are frequently used to represent information. However,

these graphs do have semantics and automatic layouts should take the semantics
of nodes and edges into account and also the conventions used to draw such
graphs manually. For instance, in a UML class model, one would expect to direct
all inheritance relationships in one direction; all other kinds of relationships are
subordinated.
Size. The amount of data that need to be visualized can be rather large;

graphs with 4,000 nodes and more are typical. One may argue that graphs at
this size should not be visualized at once since they cannot be understood at
this size anyway. In fact, one needs additional navigation, selection, and filtering
mechanisms. However, even if a larger call graph with more than 1,000 nodes
(still a small system) should be presented in excerpts, the layout for the whole
graph needs to be computed in advance. Then a ”lense perspective” could be
used to browse the large graph showing only subgraphs – where the nodes in



Software Visualization for Reverse Engineering 149

the whole graph as well as in the mental map of the viewer would keep their
position while the viewer moves the lense.

Evolution. Maintenance and reverse engineering activities require weeks,
months, or even years, and usually one cannot afford to freeze normal deve-
lopment. Consequently, the system is permanently under change and, hence,
there is not just one graph, but many graphs that are derived from each other.
Visualizations may evolve and one has to keep track of this evolution

Multiple users. Large maintenance and reverse engineering projects require
team-work and, hence, visualizations need to support multiple users that may
work at the same system at the same time at possibly different locations.

Multiple views. Maintenance and reverse engineering involve different sta-
keholders and, thus, require multiple perspectives from which a system may be
viewed. Moreover, different dimensions of the data need to be visualized, like the
time dimension or level of abstraction. Multiple views raise the questions of how
to integrate these views, how to navigate within and between views, and how to
preserve the context during navigation?

Static and dynamic visualization. Most kinds of visualization in mainte-
nance, reverse engineering, and re-engineering are static. However, for dynamic
aspects animated visualization would be useful.

Cognitive models. There is a lack of cognitive models for visual understan-
ding and empirical evidence for appropriate visualizations, i.e., we currently do
not really know how maintainers grasp visualized artifacts and which kinds of
visualization work best for a specific problem. If we knew answers to the latter
question, we could also try to automatically select the right kind of visualization
depending upon criteria of the input data to be visualized.

Interoperability. No single tool alone can solve the manifold and complex
problems of reverse engineering. Consequently, several tools need to be integra-
ted, which requires a high degree of interoperability among tools. Currently, the
reverse engineering community works on interoperability issues, in particular,
on data exchange and standard schemas. GXL has been evolved to a standard
vehicle for data exchange among reverse engineering research tools [GXL]. GXL
basically allows one to transfer graphs. It would be advantageous to the reverse
engineering and software visualization community to agree upon a joint exchange
format.

The Dagstuhl seminar on software visualization has brought together many
researchers from very different areas of software visualization. Most of their ideas
on software visualization are specifically interesting for the domain of mainte-
nance, reverse engineering, and re-engineering and may help to overcome some
of the problems mentioned above. Strangely enough, there is surprisingly little
overlap between the communities for reverse engineering and software visua-
lization in terms of people despite of the large overlap in terms of topics. It is
high time for our communities to team up since our common goal is to help
programmers understand programs.



150 R. Koschke

References

[Bauhaus, 2001] Bauhaus, http://www.bauhaus-stuttgart.de.
[Chikofsky & Cross, 1990] Chikofsky, E.J.; Cross II, J. H.: Reverse Engineering and

Design Recovery. IEEE Software, pp. 13-17, January, 1990.
[Graphlet] Graphlet, http://www.graphlet.de.
[GraphViz] GraphViz, http://www.research.att.com/sw/tools/graphviz
[GXL] GXL, http://www.gupro.de/GXL. See also the paper by And-

reas Winter et al. in these proceedings.
[GraphEd] GraphEd, http://www.uni-passau.de/GraphEd
[IEEE-Std-1471-2000] IEEE-Std-1471-2000: Recommended Practice for Architectural

Description of Software-Intensive Systems, IEEE, 2000.
[Koschke, 2000] Koschke, R.: Atomic Architectural Component Recovery for

Program Understanding and Evolution. Dissertation, Institute
of Computer Science, University of Stuttgart, Germany, 2000.

[Koschke, 2001] Koschke, R.: Survey on Software Visualization for Soft-
ware Maintenance, Re-Engineering, and Reverse Engineering,
http://www.informatik.uni-stuttgart.de/ifi/ps/rainer/softviz

[Müller, 1992] Müller, H.; Wong, K.; Tilley, S.: A Reverse Engineering Envi-
ronment Spatial and Visual Software Interconnection Models.
Proc. of ACM SIGSOFT Symposium Software Development
Environments, pp. 88-98, December, 1992.

[Roman & Cox, 1992] Roman, G.-C.; Cox, K. C.: Program Visualization: The Art
of Mapping Programs to Pictures. Proc. of the International
Conference on Software Engineering, Association of Computing
Machinery, 1992.

[VCG] VCG, http://rw4.cs.uni-sb.de/users/sander/html/gsvcg1.html


	Introduction
	Architecture Recovery in Bauhaus
	Reverse Engineering Background
	Extracted Artifacts
	Recovered Conceptual Artifacts
	Component Recovery Process
	Software Visualization in Bauhaus

	Software Visualization for Reverse Engineering in General
	Conclusion

