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ABSTRACT

Implementing, validating, modifying, or reengineering
an object-oriented system requires an understanding of
the object and class interactions which occur as a pro-
gram executes. This work seeks to identify, visualize,
and analyze interactions in object-oriented program ex-
ecutions as a means for examining and understanding
dynamic behavior. We have discovered recurring inter-
action scenarios in program executions that can be used
as abstractions in the understanding process, and have
developed a means for identifying these interaction pat-
terns. Our visualizations focus on supporting design
recovery, validation, and reengineering tasks, and can
be applied to both object-oriented and procedural pro-
grams.
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UNDERSTANDING BEHAVIOR

We began our work with the hypothesis that visualiz-
ing interactions in object-oriented program executions
can assist with software engineering tasks requiring pro-
gram understanding. The importance of dynamics in
the design, implementation, and modi�cation of object-
oriented (OO) systems cannot be over-emphasized. The
communication dialog between classes and/or objects
is typically designed using the notion of scenarios, of-
ten expressed using graphical notations such as event
trace diagrams or interaction diagrams[24, 13]. Such
diagrams are common in the design of procedural and
parallel systems[3].

To truly understand how a component such as a class
is used one must understand the scenarios within which
that class' methods can and should be invoked. This
behavioral information is not evident in object models

including the class, much less in the source code de�ning
the class. It is (or should we say, should be) described in
event trace diagrams or interaction diagrams speci�ed
during system design. This information is required to
use a class correctly and e�ectively, and must be taken
into account when a system is modi�ed.

Not only is it di�cult to design these dynamic re-
lationships, standard languages currently do not pro-
vide implementation support for interactions as �rst-
class entities1. The gap in terms of abstraction be-
tween design-level behavioral models and the source
code which implements a system can result in improper
mappings from design to implementation. As a system
evolves, modi�cations may cause a further drift from
the documented (or intended) design.

We have created scalable visualizations to examine pro-
gram event traces numbering in the hundreds of thou-
sands. Interactive graphical visualizations can present
this voluminous information much more e�ectively than
textual representations, allowing a user to control the
�ltering and abstraction of available information. Us-
ing these views we have observed recurring sequences of
interaction between classes and objects in OO systems.
We hypothesize that high-level program behavior can be
abstracted out from low-level event traces via these in-

teraction patterns, and have developed a compact data
structure which allows us to identify the existence of
interaction patterns in large program event traces.

Citrin, et al. have emphasized the importance of tools
which display and manipulateTMFDs to help document
and explain a system's behavior, visualize complex trace
data, and compare observed and predicted behavior[3].
We envision the use of our prototypes to support soft-
ware engineering tasks in several ways:

� Identifying interaction patterns in program event
traces can help an analyst construct design-level
behavioral models from the low-level behavior of
a system. This is useful during reverse engineering
tasks, especially as support for reengineering legacy

1To meet this need, several research e�orts have investigated

language support for associations[8].
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systems.

� Visualizations of the abstract behavior can be com-
pared with design level information, such as exe-
cution scenarios or interaction diagrams, to help
validate the design/implementation and to identify
areas which need reengineering.

� Adding these capabilities to a CASE tool could help
programmers keep behavioral models up to date
with respect to modi�cations of a system's imple-
mentation, a common problem in practice[21].

Indeed, the aim of our visualizations is to facilitate de-
sign recovery, validation, and reengineering tasks by
exposing dynamic interactions. While our prototypes
were originally intended to be used on object-oriented
systems, the call trace of a procedural program can be
analyzed as well. The next section describes our focus
on interactions as abstractions for program understand-
ing and how we identify interaction patterns. Following
that we discuss visualization tools that have been cre-
ated, related work, and conclusions and future work.

FOCUS ON INTERACTIONS

For the purposes of clarity in the remaining discussion,
a few formal de�nitions are in order. We de�ne an ac-

tor as an entity in a system, having some \object-like"
meaning. An actor might be a class, function, object,
�le, package, or thread. A grouping, or containment,
hierarchy exists among these actors, which is a useful
abstraction mechanism for analyzing interactions. For
example, a �le groups classes and functions, but not
objects. A class contains all functions of that class and
groups all objects of that class. A function groups all
objects that implement that function. A particular set
of actors can be grouped together as a component.

An interaction is a dynamic relation between actors.
These are typically a message passed from one actor to
another, the instantiation/deletion of a class or object
actor by another actor, or the referencing of one actor's
data by another actor. Our prototypes currently only
instrument programs to track message interactions.

An interaction scenario is then a sequence of interac-
tions between a set of actors that occurs as a program
executes. One scenario can be interleaved with another.
Interaction patterns are recurring interaction scenarios,
manifested as repeated sequences of messages (message
patterns) and/or recurring instantiation of objects (in-
stantiation patterns). Like design patterns[10], interac-
tion patterns exist at various levels of abstraction, from
language constructs to system architectures. Note that
our use of the word \pattern" is di�erent than that of
design patterns or pattern languages [10, 4], yet the two
are related{see the section on Related Work. At a low
level, interaction patterns can result from implementa-

tion aspects such as iteration through a linked-list data
structure. They also exist at the design level, where they
result from semantic operations such as class-uses-class
associations. At a very high level, recurring interactions
can be seen due to repeated usage of a system. While
these de�nitions may seem object-oriented in nature, a
procedural program can be characterized if a function
or �le is considered an actor and a function call is con-
sidered an interaction.

Identifying Interaction Patterns

In order to visualize and analyze large program execu-
tions a compact representation of the event trace and a
way to extract the occurrences of interaction patterns
is required. We have developed a compact represen-
tation of the call trace which can be used by tools to
analyze large message traces. In a spectrum of possible
representations of calling behavior that pit space over-
head versus information accuracy, the call graph and
the dynamic call trace represent two endpoints. At one
extreme, a call graph is a compact representation of
calling behavior that summarizes all possible run-time
activation stacks. There is much interesting information
about calling behavior that is dropped to gain compact-
ness. The sequencing of calls, the context in which cer-
tain calls are made, conditional and indirect calls, and
repeated calls are all examples of calling behavior that
are lost. These problems exist in software tools that use
the call graph to summarize dynamic program proper-
ties. For example, the inaccuracy of program pro�lers
such as gprof [12] and qpt [19] can be traced to their
use of the call graph to summarize context-dependent
pro�le information in a context-independent manner.

At the other end of the spectrum, the dynamic call trace
is an unbounded data structure containing a record of
all the calls and returns that occur in a program's ex-
ecution, regardless of whether the calls are direct or
indirect. Extracting the call trace may incur high run-
time overhead and storing the trace may not be feasible
for long running programs. Furthermore, there is a data
explosion problem: �nding interesting information from
the mass of data in the trace is not easy. Some trace-
based tools animate the call graph to show the trace on
the y (without storing it) [2], or compute statistical
summary information from the trace [6]. Both of these
techniques deal with the space problem by ignoring or
summarizing a large amount of dynamic information, as
is done with the call graph.

We would like to have the best of both worlds: a com-
pact representation (such as the call graph) that also
retains as much information as possible about dynamic
calling behavior (such as the dynamic call trace). We
have developed a middle ground that allows a range of
possibilities in this tradeo�. Our data structure also
provides various abstract views of the dynamic infor-
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Figure 1: (a) A call trace, (b) its corresponding call tree,
and (c) call graph. Edge directions are assumed to be
directed down the page.

mation and serves well as a query engine for software
tools dealing with calling behavior. One such abstract
view of this data structure is the notion of a message
pattern, as de�ned previously.

Implementation Details

There are three basic ideas we use to compact the dy-
namic call tree. First, we use hash consing to ensure
that identical tree structures in the dynamic call trace
are represented exactly once in the compact represen-
tation. Second, we compactly summarize repetitive se-
quences of subtrees that are generated by loops. These
sequences can be summarized at varying degrees of ac-
curacy, resulting in di�erent compact representations
(and subsequently di�erent levels of message pattern
abstractions). Finally, we compress repetitive calling
chains that are generated by recursion. The compact
representation of the dynamic call tree is a directed
acyclic graph (dag).

Figure 1 shows an example call trace, call tree, and call
graph. Our compact representation of the call tree from
Figure 1(b) is shown in Figure 2. Each vertex corre-
sponds to a call. It is clear that this representation
captures exactly the same information as the call tree.

The basic framework for parsing a call trace to pro-
duce a dag is straightforward. The analysis requires
three main data structures: a stack of active proce-
dures, a heap of dag structures, and a hash table for
determining if a particular dag structure has been built
already. The dag structures are built in a bottom-up
fashion (from the leaves of the dynamic call tree to the
root). Hash consing ensures that if a tree data struc-
ture is constructed bottom-up, then duplicate trees will
always hash to the same element.

Hash consing results in the sharing of subtrees in the
dag, as is evident by the shared subtree of A calling B
and C in Figure 2. This subtree is a message pattern,
because it has more than one incoming parent edge.
We have implemented a pattern iterator that walks the
dag and returns message patterns that are encountered.

In addition to looking for shared subtrees, the pattern
iterator also looks for repetitive subtrees sequences that
resulted from iteration in the program execution.

Discussion

The pattern recognition algorithm that we have de-
scribed does have its limitations. Identifying duplicate
subtrees in the call tree will not �nd repeated sequences
of subtrees. For example, suppose that procedure A
calls procedure B and then calls procedure C, and then
repeats this calling pattern. The pattern \B followed by
C" will not be detected because B and C are separate
subtrees in the call tree. We extended our algorithm to
detect such patterns using well-known substring match-
ing heuristics[1]. Still, as human thinkers we can use our
visualization prototypes to �nd more visual patterns in a
message trace than our pattern iterator �nds. However,
the pattern detection capabilities are extremely useful
as a starting point for the human pattern-matching pro-
cess.
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Figure 2: A compact represen-
tation of the call tree from Fig-
ure 1b.

By limiting the
stack depth of
our pattern iden-
ti�cation in the
dag representing
the call trace,
we can �lter out
lower-level behav-
ior and get very
high-level patterns.
Additionally, re-
peated patterns
can be represented
as a single in-
stance as the dag
is traversed, or a logarithmic reduction in the number of
repetitions can be done. These facilities allow our proto-
types to �lter and abstract the voluminous information
which is present in program execution traces.

VISUALIZATIONS

Our work on visualizing the dynamics of object-oriented
systems began with the idea that it might be useful to
expose the interaction between objects as an OO sys-
tem executes, and has evolved to use visualizations of
interaction patterns to support program understanding
tasks. The �rst visualization prototype we developed
animated the instantiation of objects and the message
passing between objects in a single view. The visual-
ization was based on call trace �les generated from C++

source code annotated by hand. Only small, toy pro-
grams were visualized. The next generation of visual-
ization used multiple views to show the call stack, in-
heritance hierarchy, instances, and message passing[14].
Animation was still used to show the progression of
time, but larger programs were visualized.



The next sub-sections include a summary, impact, and
descriptive example for two of our current visualization
prototypes, which we will refer to as P1 and P2. Read-
ers not wishing to understand the details of the proto-
types should skip the example sections. Both tools can
be used to visualize the execution of C++ or C programs.
The visualizations are written in C++, X Windows, and
Motif.

Prototype P1

Summary

The �rst prototype allows a user to display and
browse real-world sized event traces (100,000+ mes-
sages). These traces are generated by executing a sub-
ject program instrumented by automatically inserting
tracing objects into the source code. The Execution
Mural view (see Figure 3) shows time on the horizon-
tal axis and messages passed between classes in a pro-
gram on the vertical (much like an event trace diagram
rotated 90 degrees). We take the approach of creat-
ing a general view initially showing all the classes and
messages, and providing several visual �ltering mech-
anisms which allow a user to focus on information of
interest. These include a global navigational Informa-
tion Mural[15] which portrays the entire trace, the abil-
ity to change the ordering of classes along the vertical
axis, selectively show or hide particular classes, color-
code speci�c messages, and zoom in on sub-sections of
the message trace.

Any visualization which supports program understand-
ing tasks must include a view of the source code for the
system being examined, since that code is the concrete
realization of the system (unless of course, the system is
programmed visually). While di�erent abstract models
of the system can be developed to help a person under-
stand its behavior, if that person will be modifying the
system the abstractions must eventually be related to
the source code. In P1, a Code View (see Figure 5)
depicts the messages between classes and functions over-
laid on an abstract view of the source code. This helps
relate the messages in the Execution Mural to the source
code from which the event trace is generated.

Impact

With P1 we found that animating the execution of a pro-
gram is less important for global program understand-
ing tasks than being able to browse the entire execution
and focus on areas of interest as needed to undercover
speci�cs. We also narrowed the focus of our work to the
sequence of object interactions, while others published
work focused on cumulative dynamics[5, 6]. Scalability
became the number one issue in creating useful visual-
izations to aid the understanding processes during im-
plementation and maintenance of real-world sized sys-
tems, with the Information Mural technique created to
support this goal[15].

The P1 prototype allowed us to visually examine event
traces of several di�erent programs, including Polka[25]
and SeeSoft[9]. Visual patterns can be seen in an en-
tire message trace, and then lower-level patterns as we
zoom in on sub-sequences of the execution. The visual
patterns are either the result of similar semantic opera-
tions in the code or of iteration as in a for loop. One of
the weaknesses of the visualization in terms of helping
program understanding tasks is that a view of individ-
ual messages is really too low-level compared to a user's
mental model or system design models such as interac-
tion diagrams. The message patterns we were �nding
seemed to be useful abstractions to help bridge this gap.
The work with the P1 prototype thus motivated the de-
velopment of the compact message trace representation
and the views implemented in P2.

Example

The process of using P1 includes several steps: 1)
static analysis of the source code using gen++[7], 2)
automatic annotation of source code by a Perl script
which places tracing objects in the code as described
by O'Riordan[23], 3) compilation and execution of the
annotated source to generate dynamic event trace �les,
and 4) visualization of the information in the trace �les.
Two Execution Mural views from the P1 prototype are
shown in Figures 3 and 4. The subject program is a
Polka[25] bubble-sort algorithm animation. Polka is an
object-oriented toolkit for creating algorithm and pro-
gram visualizations, written in C++.

The major visual innovation in the Execution Mural
is the ability to create a global overview of a message
trace containing hundreds of thousands of messages.
The technique utilizes grayscale and color shading along
with anti-aliasing techniques to create a miniature rep-
resentation of an entire large information space. Such
a view is called an Information Mural; the technique is
described in [15, 16].

The importance of this global overview quickly becomes
apparent as one uses P1. First of all, viewing an entire
execution trace gives an analyse immediate insight into
di�erent phases of the execution (see Figure 3). Murals
of program traces are very repetitive, even as the mouse
is used to zoom in on smaller \windows" of the trace.
This observation led us to develop the automatic pat-
tern detection features mentioned previously. Second,
locating particular messages in a real trace is nearly
impossible without some search mechanism. The global
overview along with message coloring facilities allow the
trace to be searched visually see Figure 4).

The Code View in prototype P1 (Figure 5) uses an ab-
stract representation of a �le as a collection of class and
function de�nitions. Files are listed horizontally across
the view, with the classes in each �le represented as



Figure 3: Initial P1 Execution Mural of a Polka bubble-sort. Classes are on the vertical axis, and each message is
single pixel wide vertical line from source to destination class. The global view at the bottom is a mural of the entire
set of over 52,000 messages; a navigation rectangle shows the position of the focus area relative to the rest of the
classes and messages in the trace.

Figure 4: Execution Mural from Figure 3 with several classes hidden, the message width increased, and several
messages highlighted in di�erent colors.



Figure 5: P1 source Code View of Polka animation toolkit, with �les arranged horizontally. Circles represent class
de�nitions and squares represent functions; the �ll color shows relative message-passing volume for each node for
a particular execution trace. Arrows indicate a set of messages that were highlighted by the user in the Execution
Mural view.

circles and functions in each �le as squares. Dynamic
information gathered from the event trace is overlaid in
this view by coloring the nodes according to the relative
message-passing volume for each node, with the most
active being white. When the mouse pointer brushes
over a node, its name appears and members of its class
are highlighted. When the user highlights messages in
the Execution Mural view, arrows appear connecting
the corresponding function nodes in the Code View, as
shown in Figure 5. Notice in Figure 5 that more control-
oriented functions appear to be sources of many edges,
while computational or access functions look like sinks.

Prototype P2

Summary

The second visualization prototype (P2) is focused on
visualizing interaction patterns to support design re-
covery and reengineering tasks. It incorporates a sim-
ilar view to P1's Execution Mural, with the addition
of the automatic message pattern detection methods
described in a previous section and several message
pattern-oriented views. Patterns the tool can detect
are used as a starting point for presenting the user with
interaction patterns in execution traces. The visual in-
terface then allows the user to examine the message pat-
terns and look for new ones at various levels of abstrac-
tion.

P2 allows us to create views of a particular program ex-
ecution based on static information about the program
and a trace �le of interesting events (function calls and
returns). The views are Observers[10] of a single pro-

grammodel which contains both static and dynamic in-
formation, and they co-exist in a single Viewspace win-
dow which acts as a Controller[11] to handle user input.
A Composite[10] class hierarchy de�nes views as visual
objects themselves. Interaction occurs through point-
ing with the mouse and using pop-up menus which are
associated with the various views.

Impact

From usage scenarios for the P2 prototype like the one
we describe in the next section, the following can be
concluded: 1) interaction patterns exist in program ex-
ecutions, 2) we can automatically detect them, and 3)
they are at a similar level of abstraction as design level
models in system design documents or programmer's
mental models. It has become clear that understand-
ing the behavior of a few interaction patterns can go
a long way toward understanding the entire execution
scenario; in the P2 example, variations of a single pat-
tern constitute over 80 percent of the messages in the
trace. While this will obviously not always be the case,
it is clear that interaction patterns can be used as ab-
stractions which relate the low-level implementation to
higher level design models during design validation and
recovery tasks.

Example

An example usage scenario will serve nicely to present
the features and usefulness of P2. We describe using the
tool to examine the Polka program animation toolkit
mentioned previously. We are interested in comparing
the Polka toolkit designer's mental model of its behavior



with the actual implementation. The speci�c focus in
this scenario is on the interactions taking place as each
animation frame is rendered by Polka. A software engi-
neering task such as this might occur during validation
of an implementationwith respect to system design doc-
uments, or during construction of design models while
reverse engineering a system architecture.

Figure 6 shows an event trace diagram made by the
Polka designer to describe the interactions involved in
Polka while animating a frame. A trace �le for a Polka
bubble-sort algorithm animation which consists of al-
most 64,000 function invocations is read and processed
by P2. We �rst create a globalExecution Mural (Fig-
ure 7a) of the entire message trace. This view will act
as a global overview, showing where the message pat-
terns that are identi�ed �t within the execution. Notice
that the Execution Mural views in this prototype are
slightly di�erent from the previous generation in P1.
The view has been rotated to look more like interaction
diagrams, with the 40 classes in the program on the
horizontal axis and the almost 64,000 messages drawn
as horizontal lines down the vertical axis using the In-
formation Mural compression technique[15]. Areas that
are brighter in the mural are more dense with infor-
mation, conveying the same visual patterns that would
be apparent if a huge event trace diagram of the entire
program was observed from a distance. This global Ex-
ecution Mural does not have a focus area, it just shows
all of the messages at once.

Notice how repetitive the diagram is visually. A distinct
pattern appears in the beginning, followed by another
that repeats six times. To get a feel for the information
compression ratio, Figure 7b shows approximately the
�rst 10,000 function invocations in the trace. In part
(b) more visual patterns become apparent as we zoom
in to a �ner resolution.

Now we create a Pattern Matrix (Figure 8) showing
the classes involved in the top-level message patterns
that were identi�ed by our pattern detection algorithm
described previously. \Top-level" means the largest se-
quence of messages that occur more than once and begin
closer to the root of the message dag than other sub-
sequences that might also be message patterns. The
matrix assigns a message pattern to each column; mes-
sage patterns are identi�ed by the �rst message name
along with the global message number of the �rst mes-
sage in the pattern. The rows of the matrix correspond
to the classes in the program. The matrix is created
using the Information Mural technique as well, so is ef-
fectively scalable to hundreds of classes and patterns.
Note that the order of message patterns along the hori-
zontal axis can be changed to group patterns by name,
size, or order of occurrence in the trace. A Pattern Ma-
trix mapping functions to patterns is also available.

Figure 6: Designer's event trace diagram of process to
animate one frame in the Polka animation toolkit.

(a) (b)

Figure 7: (a) Global Execution Mural for the Polka
bubble-sort animation, essentially a miniature event
trace diagram of the entire message trace. The vertical
resolution is 64,000 messages on 400 pixels, an informa-
tion compression ratio of 160:1. (b) Part (a) zoomed in
on approximately the �rst 10,000 messages of the trace.
The information compression ratio is around 25:1.



Figure 8: Pattern Matrix for the Polka bubble-sort an-
imation. Message patterns are assigned columns in the
matrix, and rows are classes in the program. Entries
are made for classes which are \members" of each mes-
sage pattern. Pattern AnimateOne#7067 is currently
highlighted.

From this view we can see which patterns might be
related to the designer's execution scenario by look-
ing for ones which contain the same classes. The
designer's diagram (Figure 6) includes the Animator,
View, AnimObject, and AnimObjectImpl classes. The
Pattern Matrix has several AnimateOne patterns which
contain most of these classes, for example Figure 8
has the AnimateOne#7067 pattern highlighted, which
contains classes Animator, View, AnimObjectImpl,
RectangleImpl, TextImpl, AnimObject, and the
GLOBAL class which represents functions in the global
scope. This message pattern is also a likely candidate
because its �rst message is AnimateOne, which is same
as the �rst one in the designer's diagram.

The Pattern Mural view (Figure 9) gives a time or-
dering to the message patterns shown in the matrix
by showing message patterns on the vertical axis, and
where they occur in the program execution along the
horizontal. This view uses the Information Mural tech-
nique by drawing a point for each message in the exe-
cution, at sequential x coordinates and at the appropri-
ate y coordinate for the message pattern to which that
message belongs. Note that \sequential x coordinates"
are in terms of the message order, not the pixels on the
screen: manymessages may be compacted into the same
column of pixels.

The order of patterns along the vertical axis can be
changed as in the Pattern Matrix view; Figure 9 shows
patterns in order of occurrence (�rst at the top). In
this view we notice several distinct AnimateOne patterns
which occur in the middle of the trace. We hypothesize
that each of these patterns corresponds to the distinct
phases in the global Execution Mural of Figure 7a. If

Figure 9: Pattern Mural for the Polka bubble-sort an-
imation. Message patterns are assigned to the vertical
axis by order of occurrence; a point in the mural is made
for each message at sequential x coordinates, with the y
value corresponding to the pattern of which that mes-
sage is a member (messages that are not members of
patterns are not shown). The AnimateOne#7067 mes-
sage pattern is highlighted.

we turn on highlighting of the current selected pattern
in the global Execution Mural, we con�rm this suspi-
cion. Note that all the views are synchronized so that
as we change the current pattern in one view the others
change to show the location of that pattern as well. Our
technique of providing multiple views of the information
we are analyzing allows us to make observations such as
this.

The AnimateOne pattern seems be the one we are look-
ing for to compare with the designer's mental model
of frame animation. We now use our system to cre-
ate an Execution Mural of the AnimateOne#7067 pat-
tern, shown in Figure 10. The mural on the right hand
side provides a global overview of all the messages in
the pattern, and acts as a two-dimensional scroll bar
for moving the focus area on the left. Messages cor-
responding to both function calls and returns can be
displayed; calls are solid and returns are grayed. Hor-
izontal lines represent messages, and name labels can
optionally be displayed above each message. A circle
marks the destination end of the message. Because the
designer's event trace diagram does not include global
function calls (they are mostly for the graphics), we can
remove the GLOBAL class by using the mouse to select
the class label and choosing a menu option to remove
that class. Another menu option allows us to eliminate
the return messages from the display. We can scroll the
Execution Mural of Figure 10 and compare it with Fig-
ure 6 to see how the implementation behavior conforms
to the expected design.



From a quick glance through the entire pattern, we see
good conformance to the expected behavior. There are
four Updates, two which deal with RectangleImpls and
two which deal with TextImpl. The designer did not in-
clude these classes in his diagram, presumably because
they are specializations of the AnimObjectImpl class.
Because it is common for design models to deal with
abstract classes, a feature we are adding to the Execu-
tion Mural will allow subclass behavior to be generalized
into the base class.

The designer concludes that in this frame of the bubble-
sort animation two bars with their text labels are
changing places. There are some messages (BoundBox,
DamageCheck) which are not in the designer's diagram,
but are in the correct place according to the designer.
Note that the original diagram only had one DamageIt
message after the Trans message, where the observed
pattern has two. The designer con�rms that there
should be two, because one is for the old position of the
object and one is for the new position after the object
moves, changes size, or does some other action. Here is a
case where the design model would need to be updated.

For this example, the AnimateOne#7067 pattern does
in fact appear to implement the frame animating pro-
cess as expected. After investigating Execution Murals
of other AnimateOne patterns, it seems that the di�er-
ences between them result from AnimObjects �rst orig-
inating in particular frames or di�erent AnimObjects
being updated and drawn. Our visualizations should
make it easy to uncover these di�erences by providing
visual \di�s" of patterns, a feature we are adding.

RELATED WORK

Several di�erent areas overlap with our work, including
software visualization, program understanding, reverse
engineering, and OO methods. Some of the more recent
e�orts in these areas are mentioned here and related to
our work.

As mentioned previously, Citrin, et al. have attempted
to formalize the notations used to describe communica-
tion between entities in systems, using the notion of
a temporal message-ow diagram (TMFD)[3]. They
have built tools to display and edit TMFDs, to gen-
erate TMFDs from event traces, and to simulate the
operation a system using TMFDs. Their work is much
more general than ours, handling systems in which mes-
sages can be sent and received in an interleaved, non-
deterministic sequence. However, they have not done
any work to identify patterns in the event traces.

The notion of a pattern as a solution to a problem in
a particular context provides a literary form through
which experience with software can be documented to
be reused by others[10, 4]. In contrast, our interaction
patterns are so named because they too are a repeat-

Figure 10: Execution Mural from prototype P2 of mes-
sage pattern AnimateOne#7067. The mural on the
right gives a global view of all messages in the pattern
and acts as a two-dimensional scrollbar for the focus
area. The navigation rectangle in the upper part of the
global view corresponds to the messages displayed in
the focus area. The GLOBAL class has been removed
and only messages corresponding to function calls are
shown.

able entity and because they create visual \patterns"
on the screen when we visualize OO message traces.

The relation between the two types of patterns arises
in that interaction patterns will result from various de-
sign patterns, and can be seen as low-level evidence for
the existence of a design pattern. In this way, identify-
ing message patterns can be seen as a form of \design
pattern mining."

The Program Explorer is a C++ program understand-
ing tool that is focused on class and object centered
views[18]. The authors have developed a system for
tracking function invocation, object instantiation, and
attribute access. The views show class and instance re-
lationships (usually focused on a particular instance or
class), and short method invocation histories. It seems
that the system is designed to execute the program for
a while, stop execution, and then focus in on particular
classes or objects. It's not intended as a global under-
standing tool, so the user must know what (or where in



the execution) they are interested in beforehand. Ex-
amples of using the system to uncover design patterns in
real-world sized systems are given. Again, it seems that
the user must know the design pattern and have an idea
where that pattern occurs to exploit the visualizations.

HotWired is a visual debugger for C++ and Smalltalk

that provides both standard object views and a scripting
language to create simple program visualizations[17].
Views show instances of classes (similar to [5]), message
passing between individual instances, and instance at-
tribute values. It is possible to \record" particular mes-
sage traces to be replayed. Their recording strip view
shows instance activation over time, and could bene�t
from our Information Mural technique. The visualiza-
tions focus on debugging tasks, and to support custom
debugging a scripting language maps instance values to
visual objects. However, these scripts must be written
manually.

De Pauw, Helm, Kimelman, and Vlissides[5, 6] have
developed visualization techniques and a tool for pre-
senting attributes of object-oriented systems. The au-
thors use portable instrumentation techniques to ex-
tract the required information about a program's ex-
ecution. They also developed views, most of which are
chart-like, that present summary information about the
execution. These views are quite e�ective for analyzing
program performance and class relationships in terms
of the amount of interaction between classes and ob-
jects. However, the information they capture is mostly
post-mortem summary information, whereas we seek to
uncover the semantics and sequence of the interactions.
The authors made this compromise when they decided
not to store incremental information about the execu-
tion in favor of storing more cumulative information.

The OO!CARE tool is the C++ version of the CARE en-
vironment for C program understanding[20]. The idea
of the OO!CARE system is to extract and visualize de-
pendencies between classes, objects, and methods in the
program, as well as the control and data ow. The sys-
tem includes a code analyzer, a dependencies database,
and a display manager. The hierarchically designed
views present class inheritance, control-ow dependen-
cies, and �le dependencies. A column oriented view
called a collonade presents data-ow dependencies. The
dependencies are extracted statically, so in the case of a
virtual function call in C++ a \dummy" member func-
tion is created to represent all the possible run-time
bindings. While the views provide zooming and pan-
ning capabilities, plus hierarchical decomposition, the
examples given do not demonstrate that they scale to
handle large programs.

Murphy, et al. have developed an approach that allows
software engineers specify high-level models of a sys-

tem and how the source code maps into that model[22].
Then a reexion model is computed which uses call
graph and data referencing information to determine
where the model agrees and disagrees with the actual
implementation. A box-and-arrow type diagram is used
to depict the speci�ed models and their di�erences.
Their approach has helped with design reengineering
and conformance tasks. This work is directed more to-
ward static, architectural models, while our work is fo-
cused on more sequential, behavioral type models.

CONCLUSIONS AND FUTURE WORK

We have described several visualization prototypes
which reveal the interactions that take place as a pro-
gram executes. The �rst utilizes innovative global
overviews of large program event traces, and allows the
information to be �ltered and highlighted to uncover de-
tails. The second prototype embodies the notion of in-
teraction patterns as higher-level abstractions that can
be compared with design level execution scenarios. The
usage example for the P2 prototype described in this
paper gives evidence that interaction patterns exist, we
can automatically detect them, and that they are at a
similar level of abstraction as design level models in sys-
tem design documents or programmer's mental models.

Software visualizations of any kind are only useful if
they scale to handle real-world systems. We have dis-
cussed some techniques for storing and presenting large
program event traces, and di�erent alternatives which
vary the level of abstraction reected by the message
patterns. For example, when we ignore multiple iter-
ation in the call trace or limit the stack depth we get
\higher-level" message trace summaries which might be
more useful for global understanding. Being able to in-
teractively control this �ltering and abstraction is a new
feature we are adding to our system.

As is clear from our discussion in the second section, we
characterize interactions as messages between actors or
the instantiation/deletion of an object actor by another
actor. The current trace analysis prototypes track only
message patterns; the ability to trace object instanti-
ation and destruction is currently being implemented,
giving rise to more complete interaction scenario anal-
yses. Additionally, the actors in the current interaction
patterns are �les, classes, or functions; it would be use-
ful to abstract down to the object level.

The P1 and P2 prototypes are currently the basis for
a new tool, the Interaction Scenario Visualizer (ISVis),
being used to validate reverse-engineered architectural
models in research seeking to assist with the evolution
of legacy systems. The purpose of the project is to de-
velop analysis techniques which can predict how a legacy
architecture needs to change in response to changing
requirements. However, before that analysis can take



place a correct model of the legacy architecture must be
established. Usage scenarios are �rst used to describe
and test the existing system, and event traces are gen-
erated. The new prototype allows a user to visualize
interaction scenarios, identify and understand patterns
of interaction in the scenarios, input design-level models
to compare with recovered scenarios, and store analysis
sessions for later use. Many of these features make the
new prototype more usable, especially because it allows
a user to build and save high-level models of behavior.
The pilot system for this study is NCSA's Mosaic web
browser.
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