A Unified Framework for Cohesion Measurement in Object-Oriented Systems

1

Lionel C. Briand John W. Daly Jirgen Wiist
Fraunhofer [ESE Fraunhofer IESE Fraunhofer IESE
Sauerwiesen 6 Sauerwiesen 6 Sauverwiesen 6
D-67661 D-67661 D-67661
Kaiserslautern Kaiserslautern Kaiserslautern
Germany Germany Germany
briand @iese.fhg.de daly @iese.thg.de wuest@iese.fhg.de
Abstract introduced cohesion in the context of structured

The increasing importance being placed on software
measurement has led to an increased amount of research
developing new software measures. Given the importance
of object-oriented development techniques, one specific
area where this has occurred is cohesion measurement in
object-oriented systems. However, despite an interesting
body of work, there is little understanding of the
motivations and empirical hypotheses behind many of these
new measures. It is often difficult to determine how such
measures relate to one another and for which application
they can be used. As a consequence, it is very difficult for
practitioners and researchers to obtain a clear picture of
the state-of-the-art in order to selecr or define cohesion
measures for object-oriented systems.

To help remedy this situation a unified framework, based
on the issues discovered in a review of object-oriented
cohesion measures, is presented. The unified framework
contributes to an increased understanding of the state-of-
the-art as it is a mechanism for (i) comparing measures and
their potential use, (ii} integrating existing measures which
examine the same concepts in different ways, and (iil)
facilitating maore rigorous decision making regarding the
definition of new measures and the selection of existing
measures for a specific goal of measurement.

Keywards: cohesion, object-oriented, measurement.

1. Introduction

The market forces of today’s software development
industry have begun to place much more emphasis on
software quality. This has led to an increasingly large body
of work being performed in the area of software
measurement, particularly for evaluating and predicting the
quality of software. In turn, this has led te a large number
of new measures being proposed for quality design
principles such as cohesion. Modules of a high quality
software design, among many other principles, should obey
the principle of high cohesion. Stevens et al., who first

0-8186-8093-8/97 $10.00 © 1997 IEEE

development techniques, define cohesion as a measure of
the degree to which the elements of a module belong
together. In a highly cohesive module, all elements are
related to the performance of a single function. Such
modules are hypothesised o be easier to develop, maintain,
and rcuse, and to be less fault-prone. Somc cmpirical
evidence exists to support this hypothesis for systems
developed with structured and object-based techniques; see,
e.g., [8], [9], and [6].

In object-oriented software, classes replace modules,
with methods and attributes as their elemcnts. In this
context, cohesion is the degree to which the methods and
attributes of a class belong together. Again, recent research
has led to a large number of new cohesion measures for
object-oriented systermns. However, because cohesion is a
complex software attribute in object-oriented systems (e.g.,
there are several different mechanisms which are
considered to contribute to the cohesion of a class), and
there has been no attempt to provide a structured synthesis,
our understanding of the state-of-the-art is poor. For
example, because there is no standard terminology and
formalism for expressing measures, many measures are not
fully operationally defined, i.e., there is some ambiguity in
their definitions. As a result, it is difficult to understand how
different cohesion measures relate to one another.
Moreover, it is also unclear what the potential uses of many
existing mcasures are and how these different measures
might be used in a complementary manner. In addition, the
fact that there exists little empirical validation of existing
object-oriented cohesion measures means their usefulness

is not supported by any cmpirical evidence”.

To address and clarify our understanding of the state-of-
the-art of cohesion measurement in object-oriented systems

. A more detailed version of this paper is available as an International
Software Engineering Research Network technical report (ISERN-97-
09), which is available on the ISERN website:
http:/Awww icse. thg de/ISERN/pub/isern_biblio_tech.html.

Proceedings of the 4th International Software Metrics Symposium (METRICS '97)
0-8186-8093-8/97 $10.00 © 1997 |IEEE

requires a comprehensive framework based on a standard
terminclogy and formalism. This framework can then be
used to facilitate comparison of existing cohesion
measures, and to support the definition of new cohesion
measures and the selection of existing ones based on a
particular measurement goal. Analogous resecarch for
coupling measurement is described tn [1]. The coupling
framework presented in that paper is considered to be
complementary to the cohesion framework presented here.

2. Motivation

Object-oriented measurement has become an
increasingly popular research area. This is substantiated by
the fact that recently proposed in the literature are (i)
several different frameworks for coupling and cohesion and
(ii) a targe number of different measures for object-oriented
attributes such as coupling, cohesion, and inheritance.
While this 1s to be welcomed, there are scveral negative
aspects to the mainly ad hoc manner in which object-
oriented measures are being developed. As neither a
standard terminology or formalism exists, many measures
are expressed in an ambiguous manner which limits their
use. This also makes it difficult to understand how different
measures relate to one another. For example, there are many
different decisions that have to be made when defining a
cohesion measure - these decisions have to be made
considering the measurement goal and by defining an
empirical model based on clearly stated hypotheses.
Unfortunately, many of the measures proposed in the
literature are not the result of clearly documented decisions
and hypotheses. It is therefore often unclear what the
potential uses of existing measures are and how different
cohesion measures could be used in a complementary
manner to obtain a more detailed picture of the cohesion of
classes in an object-oriented system.

Several authors have introduced different approaches
and proposed measures 1o characterise cohesion in object-
oriented systems, e.g., [10], [11], [15], [3], [14], [16], [5],
[6]. Eder er al define a framework aimed at providing
qualitative criteria for cohesion; they also assign relative
strengths to different levels of cohesion they identify within
this framework [12]. However, neither this framework nor
the different approaches used have characterised existing
measures to the different dimensions of cohesion that have
been identified. Therefore, the negative aspects highlighted
above are stitl very prevalent ones. In our review of the
literature, for example, we found 15 different measures of

2. We call a measure of an internal attribute such as coheston empirically
validated, if its causal impact on some external quality attribute of
interest has been demonstrated [4]. Then, the measure is usefil in the
sense that it can be used as an indicator of that external quality
attribute. A measure is theoretically validated, if it has been demon-
strated that the measure is indeed measuring the attribute it is purported
to measure [4]. Both empirical and theoretical validation of the meas-
ures presented here are discussed in [2).

44

object-oriented cohesion. Consequently, it is net difficult to
imagine how confusing the overall piclure actually is.

To make a serious attempt to improve our understanding
of object-oricnted cohesion measurement we have to
integrate all existing approaches into a unique theoretical
framework, based on a homogenous and comprchensive
formalism. A review of existing measures has to be
performed and these measures have to be categorised
according to the unified [ramework. This framework will
then be a mechanism with which to compare measures and
their potential use, and allow more rigorous (and ease of)
decision making regarding the definition of new measures
and the selection of existing measures in the context of a
measurement goal. It should also facilitate the evaluation
and empirical validation of cohesion measures by ensuring
that specific hypotheses are provided which link cohesion
measures to external quality attributes. Finally, it should
also help identify the dimensions of cohesion which thus
far have been overlooked, ie., for which there are no
measures defined.

3. Survey of cohesion measurement
approaches and measures

In this section we perform a comprehensive survey and
critical review of existing approaches and measures for
cohesion in object-oriented systems. In Section 3.1, we
present the existing approaches and measures. These are
then compared in Section 3.2

3.1. Existing approaches to measure cohesion

Eder et al. [12] propose a framework aimed at providing
qualitative criteria for cohesion. Chidamber and Kemerer
[10], {11], Hitz and Montazeri [15], Bieman and Kang [3],
Henderson-Sellers [14], Lee et al. [16], and Briand et al.
[5]). [6] each propose different approaches to measure
cohesion in object-criented or object-based systems and
define various coheston measures accordingly.

3.1.1. Framework by Eder et al. [12}

Eder er al. [12] propose a framework aimed at providing
comprehensive, qualitative criteria for cohesion in object-
oriented systerns by adapting existing frameworks for
cohesion in the procedural and object-based paradigm to
the specifics of the object-oriented paradigm. They
distinguish between three kinds of cohesion: method, class
and inheritance cohesion, For each type, various degrees of
cohesion are proposed.

1. Method cohesion. Eder et al. apply Myers’ classical
definition of cohesion [17] to methods. Elements of a
methaod are statements, local variables and attributes of the
method’s class. They define seven degrees of cohesion,
based on the definition by Myers [17]. From weakest to
strongest, the degrees of method cohesion are:

» Coincidental: The clements of a method have nothing in
common besides being within the same method.

Proceedings of the 4th International Software Metrics Symposium (METRICS '97)
D-8186-8093-8/97 $10.00 © 1997 |IEEE

* Logical: Elemcnts with similar functionality such as
input/output handling are collected in one method.

« Temporal: The elements of a method have logical cohe-
sion and are performed at the same time.

« Procedural: The elements of a method are connected by
some control flow.

» Communicational: The elements of a method are con-
nected by some control flow and operate on the same set
of data.

» Sequential: The elements of a method have communica-
tional cohesion and are connected by a sequential con-
trol flow.

* Functional: The elements of a method have sequential
cohesion, and all elements contribute 1o a single task in
the problem domain. Functional cohesion fully supports
the principle of locality and thus minimizes maintenance
efforts.

2. Class cohesion. Class cohesion addresses the
relationships between the elements of a class. The clements
of a class are its non-inherited methods and non-inherited
attributes., Eder et al. use a categorisation of cohesion for
abstract data types by Embley and Woodfield [13] and
adapt it to object-oriented systems. There are five degrees
of class cohesion. From weakest to strongest, these are:

o Separable: The objects of a class represent multiple
unrelated data abstractions. For instance, the cohesion of
a class is separable, if the methods and attributes can be
grouped into two sets such that any method of one set
invokes no methods and references no attributes of the
other set.

* Multifaceted: The objects of a class represent multiple
related data abstractions. The relation is caused by at
least one method of the class which uses all these data
abstractions. If we interpret the attributes of a class as a
relation schema (as in a relational database), the relation
schema would not be in second normal form.

* Non-delegated: There exist attributes which do not
describe the whole data absiraction represented by a
class, but only a component of it. The attributes of the
class interpreted as relation schema violate third normal
form. Attributes describing only a component of the data
abstraction should be moved in a class of their own.

¢ Concealed: There exist some useful data abstraction
concealed in the data abstraction represented by the
class. Consequently, the class includes some attributes
and methods which might make another class.

* Model: The class represents a single, semantically mean-
ingful concept.

3. Inheritance cohesion. Like class cohesion, inheritance
cohesion addresses the relationships between elements of a
class. However, inheritance cohesion takes all the methods
and attributes of a class into account, ie., inherited and
non-inherited. Inheritance cohesion is strong if inheritance
has been used for the purpose of defining specialized

children classes. Inheritance cohesion is weak, if it has becn
used for the purpose of reusing code. The degrees of
inheritance cohesion are the same as those for class
cohesion.

The definitions of the degrees of cohesion i this
framework are not amenable to operational, automated data
collection, because determining the degree of cohesion of a
given class or method is subjective and must be based on a
semantic analysis of the class or method. The definitions
should be used as guidelines to derive syntactically-based
measures which are measuring approximations of these
degrees of cohesion in a particular context.

3.1.2. Approach by Chidamber and Kemerer [10], [11]
Chidamber and Kemerer base their approach to define
the cohesion of a class on the notion of the degree of
similarity of the class’ methods. The degree of similarity of
a set M of methods is the number of atiributes used in
common by all methods in M, formally denoted by G(M}.
Chidamber and Kemerer argue that 6{(M) itself is nol a
suitable measure for cohesion of a class ¢: if all but one
method in ¢ use the same set A of attributes, and the
remaining method only uses attributes not in A, we have
o(M) = 0, even though most methods of ¢ are similar.

Instead, Chidamber and Kemerer propose a cohesion
measure LCOM defined as follows {10]:

Consider a Class C,; with methods M;, M, ... M, Let
{1} = set of attributes used by method M;. There are n
such sets {{;}, ..., {1,/. LCOM = The number of disjoint
sets formed by the intersection of the n sets.

LCOM is an inverse cohesion measure. A high value of
LCOM indicates low cohesion and vice versa. The above
definition of LCOM has been interpreted in different ways
by different authors. The interpretation by Hitz and
Montazeri [15] will be discussed in Section 3.1.3.
Henderson-Sellers offers the following interpretation [14]:
LCOMI = |{I,-r'\1j = @|Vi, j.i# j}|. ie., the number

of pairs of methods in class ¢ having no common atiribute
references.

In the definitions of measures LCOM and LCOMI1, it is
not clear whether the methods of class C; include inherited

methods or not. Also, even though it is not said explicitly,
we can assume that the set /; of attributes used by method
M; only include attributes of class C,, or, at most, attributes
that C; has inherited, but not of any other classes.

In [11}, Chidamber and Kemerer give a new definition of
LCOM:

Consider a Class C; with methods M, M, .., M,. Lel

{f;} = set of instance variables used by method M,

There are n such sets (1}, ..., {1,J. Let

P ={ Ij)|15ﬁ1j:®},and

i

45

Proceedings of the 4th International Software Metrics Symposium (METRICS '97)
D-8186-8093-8/97 $10.00 © 1997 |IEEE

0 = {(Ii’lj)llim[j'-’t@}'
If all nsets {7}, ..., (1} are & thenlet P = .

Pl-1Q|, if P>
Lcon < 1101 i P> 10
0, otherwise
We will refer to this version of LCOM as LCOM2,
LCOM2 is the number of pairs of methods in a class having

no common attribute references, |P|, minus the number of

pairs of similar methods, |Q|. However, if |P|<|Q|,
LCOM? is set to zero. The definition of LCOM2 is almost
operational. Again, it is not stated whether inherited
methods and attributes are included or not, and we have to
assume that sets /; only include attributes of class C;.

3.1.3. Approach by Hitz and Montazeri [15]

Hitz and Montazeri base their approach on the work of
Chidamber and Kemerer. They interpret the definition of
LCOM in [10] as follows [15]:

Let X denote a class where [y is the set of its instance
variables and My is the set of its methods. Now consider
a simple, undirected graph GyfV.E) with V=M, and
E = {{m n)e VxVi3ie I:(m accesses i) A

{(n accesses 1)}

LCOM is then defined as the number of connected com-
ponents of Gy.

We will refer to this version of LCOM as LCOM3. The
above definition 1s almost operational. It is not stated
whether inherited methods and attributes are included or
excluded in the sets 7y and My.

Hitz and Montazeri identified a problem with access
methods for LCOM3. An access method provides read or
write access to an attribute of the class. Access methods
typically reference only one atiribute, namely the one they
provide access to. If other methods of the class use the
access methods, they may no longer need to directly
reference any attributes at all. These methods are then
isolated vertices in graph Gy. Thus, the presence of access
methods artificially decreases the class cohesion as
measured by LCOM3. There is no empirical justification
for this artificial loss of cohesion. To remedy this problem,
Hitz and Montazeri propose a second version of their
LCOM3 measure, where graph Gy also has an edge
between vertices representing methods m and n, if m
invokes n or vice versa:

E = {(mn)e VxV|die I, ((mnaccesses i) A
(n accesses 1)) v (mcalls n) v (ncallsm)}
We refer to this measure as LCOM4,

In the case where Gy consists of only one connected
component (LCOM4=1}, the number of edges |E| ranges

between V|1 (minimum cohesion) and

46

V] - (J]¥| = 1)/2 (maximum cohesion). Hitz and Montazeri
define a measure C (“connectivity”) which further
discriminates classes having LCOM4=/ by taking into
account the number of edges of the connected component:

[El - (VI - 1)

€= T-n =D

We always have C(¢) e [0,1]. Values 0 and 1 are taken
for |E| = |V| -1 and |E| = |V|{|V|-1)/2, respectively.

3.1.4. Approach by Bieman and Kang [3]

The approach by Bieman and Kang to measure cohesion
is similar to that of Chidamber and Kemerer. They also
consider pairs of methods which use common attributes.
However, the manner in which an attribute may be used is
different. Besides attributes used directly by a method m,
indirectly used attributes are also considered. Method m
uses attribute ¢ indirectly, if m directly or indirectly invokes
a method m’ which uses attribute «. Two methods are
catled “connected”, if they directly or indirectly use
common attributes.

The measure TCC (tight class cohesion) is then defined
as the percentage of pairs of public methods of the class
which are connected, i.e., pairs of methods which directly
or indirectly use common attribules.

Measure LCC (loose ¢lass cohesion) also considers pairs
of “indirectly connected” methods. If there are methods
my,..., my, such that m; and m,,, are connected for i=1,...n-
1, then m; and m,, are indirectly connected. Measure LCC is
defined as the percentage of pairs of public methods of the

class which are directly or indirectly connected. See [3] or
[2] for formal definitions of TCC and LCC.

With respect to inheritance, Bieman and Kang state
three options for the analysis of cohesion of a class.

1. exclude mherited methods and inherited attributes from
the analysis, or

2. include inherited methods and inherited attributes in the
analysis, or

3. exclude inherited methods but include inherited

attributes.

Bieman and Kang identified a problem with constructor
methods for TCC and LCC. Constructor methods provide
the class attributes with initial values and therefore access
most or all of the class’ attributes. If mc is a constructor
method which references all attributes of the class, then mc
is connected to any method m which references at least one
attribute of class ¢. That is, the presence of mc creates many
pairs of directly connected methods. Furthermore, it m, and
n; are two methods which reference at least one, but not
necessarily the same, attribute of class ¢, then m; and m;, are
indirectly connected via mc. That is, mc indirectly connects
any two methods which use at lcast one attribute. We see
that the presence of a constructor method artificially

Proceedings of the 4th International Software Metrics Symposium (METRICS '97)
-8186-8093-8/97 $10.00 © 1997 |IEEE

increases cohesion as measured by TCC and LCC, which is
not empirically justified. Bieman and Kang therefore
exclude constructors (and also destructors) from the
analysis of cohesion [3].

3.1.5. Approach by Henderson-Sellers [14]
Henderson-Sellers scts out to define a cohesion measure
having the following properties:

» The measure yields 0, if each method of the class refer-
ences every attribute of the class (this situation is called
“perfect cohesion” by Henderson-Sellers).

» The measure yields 1, if each method of the class refer-
ences only a single attribute.

* Values between 0 and 1 are to be interpreted as percent-
ages of the perfect value.

Henderson-Sellers proposes the following measure,
referred to as LCOMS, which satisfies the above properties:

Consider a set of methods {M,} (i=/,...,m) accessing a
set of attributes {A,} (j=1.....a}. Let the number of meth-

ods which access each attribute be [L(A).

€
1
a2 A —m
LcoMs = =1 —
1 —-m

Again, it is unclear whether inherited methods and
attributes are accounted for or not.

3.1.6. Approach by Lee et al. {16]

Lee et al. propose a set of cohesion measures based on
information flow through method invocations within a
class. For a method m implemented in class ¢, the cohesion
of m 1s the number of invocations to other non-inherited
methods of class ¢, weighted by the number of parameters
of the invoked methods. The more parameters an invoked
method has, the more information is passed, the sironger
the link between the invoking and invoked method. The
cohesion of a class is the sum of the cohesion of its non-
inherited metheds. The cohesion of a set of classes is
simply the sum of the cohesion of the classes in the set. The
definitions of these measure (referred to as ICH for
information-flow based cohesion) use a formalism that
would be rather lengthy o reproduce here. See [16] or [2]
for formal definitions of these measures.

3.1.7. Approach by Briand et al. [5], [6]

Briand er al. define a set of cohesion measures for
object-based systems (such as Ada implementations). In the
following, we adapt these measures to object-oriented
systems. We make one simplification: the original measures
were defined for so-called “software parts”, i.e., a module
or a hierarchy of nested modules. We define the adapted
object-oriented measures at the class level, but do not
consider nested classes. Although some programming
languages allow the definition of nested classes, nesting of
classes is not a major issue in object-oriented design; it can

47

be avoided entirely through aggregation (defining attributes
as an instance of another class).

For the adaption of the cohesion measures 1o object-
oriented systems, we sce a class as a collection of data
declarations and methods. Data declarations are (i} local,
public type declarations, (ii) the class itself (as an implicit,
public type), and (iii} public attributes. A data declaration a
interacts with another data declaration b, il a change in a’s
declaration or use may cause the need for a change in b’s
declaration or use. We say there is a DD-inreraction
between data declarations e and b, or, shorter, ¢ DD-
interacts with b.

Examples:

« If the definition of a public type t uses another public
type t, there is a DD-interaction between * and t.

+ If the definition of a public attribute a uses a public type
1, there is a DD-interaction between f and a.

= If a public attribute a is an array and its definition uses
public constant @’ , there is a DD-interaction between a’
and a.

DD-interactions need not be confined to one class. There
can be DD-interactions between attributes and types of
different c¢lasses. The DD-interaction relationship is
transitive. If @ DD-interacts with & and & DD-interacts with
¢, then ¢ DD-interacts with c.

Data declarations also can interact with methods. There
is a DM-interaction between data declaration ¢ and method
m, if @ DD-interacts with at least one data declaration of n.
Data declarations of methods include their parameters,
return type and local variables. For instance, if a method m
of class ¢ takes a parameter of type class ¢, there is a DM-
interaction between m and the implicit type declaration of
class .

All DD-interactions between data declarations, and DM-
interactions involving parameters and return types can be
determined from the class interface, and thus are available
early in the development process. We define Cl(c) (CI for
cohesive interactions) to be the set of all such DD- and
DM-interactions. Max(¢) is the set of all possible DD- and
DM-interactions in the class interface. Measure RCI (ratio
of cohesive interactions) is then defined as
|CI(e)l

RCIe) = i

RCI ranges between O and 1, where values 0 and 1
indicate minimum and maximum cohesion, respectively.

At the end of the high level design phase, designers will
usually have a rough idea of which interactions there exist
besides those that can be determined from the class
interface. Three cases are possible:

Proceedings of the 4th International Software Metrics Symposium (METRICS '97)
-8186-8093-8/97 $10.00 © 1997 |IEEE

* Some interaction will be known to exist, We will denote
the set of all known interactions by K(c). Notice that

Cl{cyc K(c).

» Some interactions may or may not exist, the available
formation is not sufficient at the current development
stage. We denote the set of these unknown interactions
by U(c).

* The remaining interactions are known not to exist.
Using this additional information, we can define three

MOore Measures:

+ The neutral rtatio of cohesive
NRCI(c) = [K(e)l/(IMax(e)l - |U(e)),
{unknown interactions are not taken into account).

» The pessimistic ratio of
PRCI(c) = |[K(c)|/IMax(c)|,
(unknown interactions are considered as if they were
known not to be actual interactions).

» The optimistic ratio of cohesive
ORCI(c) = ({K(e)l +|U(N)/|Max(c)i.
(unknown interactions are considered as if they were
known to be actual interactions).

interactions:

cohesive Interactions:

interactions:

3.2. Comparison of approaches

A precise comparison of the approaches shows there are
differences in the manner in which cohesion is addressed.
Another reason for the differences in the approaches may
be the different objectives pursued by the approaches. For
example, Briand ef al. examined only early design
information to investigate potential early quality indicators
while other authors investigated information mainly
avaitable at low level design and implementation; hence
differences are found in the mechanisms that make a class
cohesive. A second reason is that some of the issues dealt
with by some authors are considered to be subjective and
too difficult to measure automatically. For example, the
degrees of method or class cohesion (addressed by Eder ez
al) is not something which can be easily determined
automatically or even manually. The following sections
discuss in detail the significant differences between the
various approaches and what can be learned from these
differences.

3.2.1. Types of connection

By “type of connection” we refer to the mechanisms that
link elements within a class and thus make a class cohesive.
In the review of cohesion measures, we can distinguish two
categories:

« In the first category, we find measures focused on count-
ing pairs of methods that use or do not use common
attributes. Chidamber and Kemerer’s idea of “similar”
methods falls into this category, Hitz and Montazeri
have reused this idea in their approach. The approach by
Bieman and Kang also is based on counting pairs of
methods that access commaon attributes.

48

* In the second category, measures capture the cxtent to
which individual methods use attributes or locally
defined types (LCOMS, RCI), or invoke other methods
(ICH).

It is possible to have onc measure count different types
of conncctions. For instance, measures LCOM4, TCC and
LCC are focused on counting pairs of methods using
common attributes, and method invocations.

The ICH suite of measures are based on method
invocations solely. The attributes of a class arc not
considered at all. This is in sharp contrast to the definitions
of all other measures.

3.2.2. Domain of the measures

Most of the reviewed measures are defined at the class
level. However, finer and coarser domains are also
conceivable.

» For an individual attribute or method, we could count the
number of other class elements to which it is connected,
thus analysing how closely related the atiribute or
method is to other elements of its class. This could also
be interpreted as the degree to which the attribute or
method contributes to the cohesion of 1ts class. From
such an analysis, we could draw conclusions as to how
well the attribute or method “fits” into the class, or
whether it should perhaps be moved to another class.

» We can quantify the cohesion of a set of classes or the
whole system based on the cohesion of each of the par-
ticipating classes.

The ICH suile of measures is an example how a measure
defined at the method level is scaled up to the class level
and sets of classes. However, this done in a manner such
that the measures are additive, which may not be a desirable
property of a cohesion measure. For instance, if two
unrelated, but highly cohesive classes ¢ and d are merged
into a single class e, the cohesion of the class e would be
the sum of the cohesion of the separate classes ¢ and 4. That
is, class e has an even higher cohesion than any of the
separate classes. This 1s counter-intuitive, as an object of
class ¢ represents two separale, semantic concepts and
therefore should be less cohesive.

3.2.3. Direct and indirect connections

Some of the approaches o measure cohesion include the
analysis of indirectly connected elements. Indirect
connections are of potential interest when defining criteria
for when to break up a class. To illustrate this, we apply
measures LCOMI1 and LCOM3 to the example classes
depicted in Figure 1. In the figure, a class ¢ is represented
by a graph . as used in the definition of measure LCOM3.
The vertices are the methods of ¢, and there are edges
between similar methods, i.e., methods which use a
common attribute. This is the type of connection both
LCOMI and LCOMS3 focus on. LCOM1 counts the number
of pairs of methods in a class with no common attribute
references. Because each class in Figure 1 has six methods
and five pairs of simiar methods, we have

Proceedings of the 4th International Software Metrics Symposium (METRICS '97)
0-8186-8093-8/97 $10.00 © 1997 |IEEE

LCOMI1(c)=LCOMI{d), ie.. the classes are equally
cohesive according to measure LCOMI. LCOM3(c) is
detined as the number of connected components of graph
G,. In Figure 1, it is LCOM3(c}=1 and LCOM3(d)=2, ic.,
class ¢ is more cohesive than class d according to measure
LCOMS3. This reflects an important difference between
classes ¢ and o in class ¢, each method is directly or
indirectly connected with every other method. In class &, on
the other hand, there are pairs of methods which are not
even indirectly connected. This may indicate that the
methods should not be encapsulated in the same class. Note
that there could be reasons why the methods should be
encapsulated together in one class anyway, e.g., because of
method invocations from one connected component to the
other.

*—o

class ¢ class d
Figure 1. Example classes

Ideally, the graph G_. consists of only one connected
component (LCOM3(c)=1). Hitz and Montazeri remark,
that class ¢ can still be more or less cohesive. The number
of edges of graph G, can range between n— 1 (minimum

cohesion) and s#{n — 1)/2 (maximum cohesion), where #
is the number of vertices of G, In other words, the
discriminative power of measures counting the number of
connected components (such as LCOM3 or LCOM4) is
limited, because a connected component can show various
degrees of connectivity. Therefore, Hitz and Montazeri
proposed measure C, which is a normalized count of the
number of edges of G.. Measure C can be used to further
discriminate classes for which graph &, has only one
connected component. However, using two measures to
completely determine the cohesion of a class has the
drawback that cohesion is no longer defined on an interval
scale, but only on an ordinal scale. In addition, measure C
is not necessarily a better cohesion measure since it may
not be possible to define classes with fully connected
components,

TCC and LCC are also measures which take indirect
connections into account, LCC even in two different ways.
First, both measures count pairs of “connected” methods,
i.e., methods which directly or indirectly use a common
attribute. Method m uses an attribute a indirectly, if a is
used by a method which is directly or indirectly invoked by
m. Therefore, TCC and LCC take indirect method
invocations into account. TCC counts the number of pairs
of connected methods. It is therefore similar to measure C,
which counts the number of pairs of “similar” methods.
LCC counts the number of directly or indirectly connected
pairs of methods, and this is the second way in which
indirect connections are accounted for by LCC. This again
is related to the idea of counting connected components in

49

LCOM3 or LCOM4: Consider a graph G where vertices are
methods and there are edges belween connected methods.
Then, “two methods m and # are indirectly connected™ is
equivalent to “methods m and n lie within the same
connected component of graph G7. The condition “each
method is directly or indirectly connected to every other
method” is equivalent to “graph G consists of only onc
connected component”. A low value of LCC corresponds
with a large number of connected components of &. In that
respect, LCC is conceptually similar to LCOM3 and
LCOMA4,

L.COMS counts for each atiribute how many methods
access the attribute. Only direct connections between
methods and attributes are considered. In a completely
cohesive class, each attribute is accessed by every method.
Whether such a design is desirable is unknown.

The RCI measures are a count of interactions between
elements in the c¢lass. In a completely cohesive class, cach
element interacts with every other element. Because the
interaction relationship is transitive, there need not be a
direct interaction between all pairs of elements in order to
have a maximum RCI. As a consequence, RCI does not
have the drawback of LCOMS5 that direct interactions
between all elements are required to get a maximum value.

We summarize the results of this discussion:

« Indirect connections appear to be a better criterion than
direct connections when indicators for when to splitup a
class are needed.

* With direct connections, each element of a class needs to
be directly connected to every other element in order for
the class to have maximum cohesion. This appears to be
an unrealistic requirement.

* Measures accounting for indirect connections are less
discriminative; maximum cohesion can be attained for a
larger number of classes.

3.2.4. Inheritance

For the analysis of cohesion of a class ¢, we have several
options available concerning the attributes and methods ¢
has inherited. Two straightforward options are:

1. exclude inherited attributes and methods from the analy-
si8, Or
2. include inherited attributes and methods in the analysis.

These two options form the distinction between class
and inheritance cohesion in the framework by Eder er al,
(see Section 3.1.1). A child class ¢ represents an extension
of its parent class d. If we exclude inherited attributes and
methods, we analyse to what degree this extension
represents a single semantic concept. If we include
inherited attributes and methods, we analyse whether class
¢ as a whole stll represents a single semantic concept.
These are two quite different aspects, and both should be
considered.

Proceedings of the 4th International Software Metrics Symposium (METRICS '97)
(0-8186-8093-8/97 $10.00 © 1997 |IEEE

Bieman and Kang offer a third option for the analysis of
cohesion [3]:

3. include inherited attributes, but exclude inherited meth-
ods from the analysis.

Bieman and Kang do not provide any rationale for this
option.

A fourth alternative would be to exclude inherited
attributes but include inherited methods. This of course
makes little sense, as inherited methods can only access
inherited attributes.

With the exception of measures TCC, LCC and ICH, the
influence of inheritance apparently has not been addressed
in the definition of the reviewed cohesion measures. In the
original definition of the RCI measures, inheritance is not
addressed, because these measures were defined in context
of object-based systems.

3.2.5. Access methods and constructors

In object-oriented design, classes usually have “access
methods”. An access method provides read or write access
to an attribute of the class. Access methods typically
reference only one attribute, namely the one they provide
access to, Thus, many pairs of access methods can be built,
which do not use any common attributes. This constitutes a
problem for measures which count such pairs (e,
LCOMI, LCOM2, and [.COM3).

In addition, if other methods of the class use the access
methods, they may no longer need to directly reference any
attributes at all. Therefore, the presence of access methods
artificially decreases the class cohesion for measures based
on method-attributes references. In the definitions of
LCOM4 and C, this problem has been solved by adding
method invocations to graph G, (see Section 3.1.3). In the
definitions of TCC and LCC, this problem is circumvented
by introducing “indirectly” used attributes: if a method m
invokes an access method, m indirectly uses the attributes
accessed by the methods.

Constructor methods provide the class attributes with
initial values and therefore access most or all of the class
attributes. The presence of such a method constitutes a
problem for measures counting “similar” or “connected”
methods and indirect connections (LCOM3, LCOM4 and
LCC). As explain in Section 3.1.4, the constructor method
creates an indirect connection between any two methods
which use at least one attribute, and artificially increases
cohesion. Destructors are less problematic, because they do
not provide attributes with values and therefore do not need
to reference all attributes.

3.2.6. Summary and conclusions

From the above discussion we can see that there exists a
variety of decisions to be made during the definition of a
cohesion measure. [t is important that decisions are based
on the intended application of the measure if the measure 1s
to be useful. When no decision for a particular aspect can

50

be made, all alternatives should be investigated empirically.
A second observation is that because the ditferent aspects
of cohesion are widely independent of each other, a large
number of cohesion measures could be defined - this
defines the problem space for cohesion measurement
research in object-oriented systems.

4. A unified framework for cohesion
measurement

In this section, a new framework for cohesion in object-
oricnted systems is proposed. The framework is defined on
the basis of the issues identified by comparing the various
approaches to measure cohesion (Section 3.2} and the
discussion of existing measures. The objective of the
unified framework is to support the comparison and
sefection of existing cohesion measures with respect to a
particular measurement goal. In addition, the framework
should provide guidelines to support the definition of new
measures with respect to a particular measurement goal
when therc are no existing measures available. The
framework, tf used as intended, will

* ensure that measure definitions are based on explicit
decisions and well understood properties,

« ensure that all relevant alternatives have been considered
for each decision made,

= highlight dimensions of cohesion for which there are
few or no measures defined.

The framework consists of five criteria, each criterton
determining one basic aspect of the resulling measure.
First, we describe each criterion: what decisions have to be
made, what are the available options, how is the criterion
reflected by the cohesion measures in Section 3.1. We then
briefly discuss in Section 4.2 how the [ramework can be
used to derive cohesion measures. For each criterion, we
have to choose one or more of the available options which
will be strongly influenced by the stated measurement goal.
Note that these criteria are not sufficient in isolation; other
aspects such as properties of measures (e.g., those proposed
in [7]) and results from empirical validation studies must be
also considered. Due 1o space constraints, the influence of
these aspects cannot be addressed here.

4.1. Framework criteria

4.1.1. Type of connection

By type of connection we mean the mechanism that
makes a class cohesive. In Table | we summarize types of
connections used by the measures in Section 3.1.

A connection within a class is a link between elements
of the class (attributes, methods, or data declarations). For
each type of connection, the elements are listed in the
columns “Element 17 and “Element 27. Column
“Description” explains the type of connection. Column
“Measures” lists for each type of connection, which of the
reviewed measures use that type of connection. The

Proceedings of the 4th International Software Metrics Symposium (METRICS '97)
0-8186-8093-8/97 $10.00 © 1997 IEEE

]

Table 1. Types of connection

Element 1 Element 2 Description Measurcs
method m of a attribute a m references « LCOMS5
class ¢ of class ¢
method m of method m’ m invokes m’ ICH, LCOM4, C
class ¢ of class ¢

method m of
class ¢

method m” of

class ¢, m=m’

mand m” directly reference an attribute a of
class ¢ in common {“similar methods™)

LCOMI, LCOM2, LCOM3,
C, LCOM4

method m of
class ¢

method m” of

classc, m#m’

mand m’ directly or indirectly reference an

atiribute a of class ¢ in common {“‘connected
methods™)

TCC, LCC

data declaration

data declaration in

data-data interaction

RCI, NRCI, ORCI, PRCI

in class ¢ class ¢
6 method m of data declaration in data-method interaction RCI, NRCI, ORCI, PRCI
class ¢ class ¢

numbers in column “#” are used later to reference the types
of connections.

4.1.2. Domain of the measure

The domain of the measure specifies the objects to be
measured (methods, classes etc.). Table 2 shows possible
domains for the cohesion measures, and for each domain,
the measures from Section 3.1 having that domain.

Table 2. Mapping of measures to domains

Domain Measures
attribute -
method ICH
class L.LCOMI, LCOM2, LCOM3, C,

LCOM4, LCOMS3, TCC, LCC, ICH,
RCI, NRCI, PRCI, ORCI

ICH

system -

set of classes

As we see, most measures are defined at the class level.
Measures defined at the attribute and method level are also
conceivable. These measures count the number of
connections a method or attribute has to other elements of
the class. Measures defined on the c¢lass level can be scaled
up 1o sets of classes or the whole system.

4.1.3. Direct or indirect connections

We have to decide whether to count direct connections
only or also indirect connections. For example, consider a
method m; which is “similar” to a method m; (connection
type #3), which in turn is similar to method m1; Then
methods m,; and m, are directly connected through a
connection of type #3, as are methods m, and m;. Methods
m, and m; are indirectly connected.

51

Table 3 shows which measures in Section 3.1 count
direct connections only and which also count indirect
connections.

Table 3. Measures counting direct and

indirect connections

Type Measures
direct LCOMI, C, LCOM2, LCOMS, TCC, ICH
indirect | LCOM3, LCOM4, LCC, RCI, NRCI, ORCI,
PRCI

4.1.4. Inheritance
Two aspects are to be considered with respect to
inheritance:

« How do we assign methods and attributes to classes?

= For method invocation: shall we consider static or poly-
morphic invocations?

The aspects can be dealt with in the order they are listed
here.

How to assign methods and astributes to classes

As we found in the review of the cohesion measures, we
have two opiions available concerning the attributes and
methods ¢ has inherited for the analysis of cohesion of a
class ¢:

1. Exclude inherited attributes and methods from the analy-
sis.
A child class ¢ represents an extension of its parent class
d. If we exclude inherited attributes and methods, we
analyse to what degree this extension represents a single
semantic concept.

2. Include inherited attributes and methods in the analysis.
If we include inherited attributes and methods, we ana-
lyse whether class ¢ as a whole still represents a single
semantic concept.

From the measures defined in Section 3.1, ICH
conforms to the first option, for TCC and LCC, both

Proceedings of the 4th International Software Metrics Symposium (METRICS '97)
0-8186-8093-8/97 $10.00 © 1997 IEEE

options have been suggested. In the definition of the other
measures, inheritance apparently has not been addressed.

Polvmorphism

The next guestion is how to deal with polymorphism.
This will be relevant only if the chosen type of connection
involves method invocations (types #2 and #4), for the
special case that a method of a class ¢ polymorphistically
invokes a method of its ancestor(s). We have two options:

* Account for polymorphism, i.e., for a method m, we
consider connections between m and all methods m”
that can possibly be invoked in the implementation of m
through polymorphism and dynamic binding.

* Do not account for polymorphism, i.e., for a method m,
we count connections between m and methods m” that
are statically invoked.

Table 4 shows which measures in Section 3.1 account
for polymorphism and which do not. Only measures

counting connections of types #2 and #4 are considered in
the table.

Tabile 4. Mapping of measures to oplions for
accounting for polymorphism

Measure
ICH
LCOM4, C, TCC, LCC

Type
account for polymorphism

do not account for
polymorphism

4.1.5. Access methods and constructors

As we have seen in the review of the measures, access
methods and constructors may artificially increase or
decrease the values for cohesion measures. How to account
for access methods and constructors should be a conscious
decision in the definition of a cohesion measure and is
therefore part of the framework.

Access methods

Access methods cause problems for measures which
count references to attributes (connection types #1 and #3).
Instecad of referencing an attribute directly, the access
method may be used, which is not accounted for by these
types of connections. Thus, the number of references o
attributes is artificially decreased. A solution to this
problem is to count the invocation of an access method as
reference to the attribute. However, this solution may be
difficult to implement in practice because il is not always
possible to recognize access methods automatically.

Access methods also cause problems for measures that
count pairs of methods which use common attributes
(connection types #3 and #4). Because access methods
usually access only one attribute, many pairs of methods
that do not reference a common attribute can be formed
using access methods. Thus, the cohesion is artificially
decreased. A solution to this problem is to exclude access
methods from the analysis.

52

The available opticns for how to deal with access
metheds are summarized in Table 5. Column
“Connections” indicates the types of connections [or which
the respectlive option is applicable.

Table 5. Options to account for access methods

Option Description Connections
1 Do nothing (treat access meth- All types
ods as regular methods)
2 Consider the invocation of an #],#3
access method as a reference to

that attribute

3 Exclude access methods from #3, #4
the analysis

The measures as defined in Section 3.1 ail conform to
option 1.

Constructors

Constructors cause problems for measures that count
pairs of methods which use common atiributes (connection
types #3 and #4). Constructors typically reference all
attributes. This artificially increases the cohesion of the
class, because it generates many pairs of methods that use a
common attribute. A solution to this problem is to exclude
constructors from the analysis. We thus have two options
how to account for constructors, which are summarized in
Table 6.

Table 6. Options to account for constructors

Option Description Connection
4 Do nothing (treat constructors All types
as regular methods)
5 Exclude constructors from the #3, #4
analysis

The measures in Section 3.1 all conform to option 4,
except measures TCC and LCC, which take option 3.

4.2, Application of the framework

We apply the framework to select existing measures or
to derive new measures for a given measurement goal. Note
that the framework is not intended te be used as a means to
search cohesion measures 1 an ad-hoc manner, or to
generale an ecxhaustive sel of theoretically possible
cohesion measures. Applying the framework implies
following two steps:

1. For each criterion of the framework, choose one or more
of the available options basing each decision on the
objective of measurement.

2. Choose the existing measures accordingly or, if none
exist to match the decisions made, construct new cohe-
sion measures. Remember that properties such as those
presented in [7] can also be used to guide the definition
and theoretical validation of new measures. For instance,
Briand ¢t al. suggest that a cohesion measure should be

Proceedings of the 4th International Software Metrics Symposium (METRICS '97)
(-8186-8093-8/97 $10.00 © 1997 |IEEE

normalized to allow meaningful comparison of the cohe-

sion of classes which have different sizes [71.

As a result of applying the framework criteria, the set of
connections of interest for a class will be identified. For the
definition of the measure, we then need two figures: the
number of actual connections of interest present, and the
maximum number of possible connections of interest. We
can thus define the cobesion measure as

number of actual connections of interest
maximum number of possible connections of interest ’

This yields a normalized cohesion measure ranging
between 0 and 1.

5. Conclusions

We have provided a framework for the comparison,
evaluation, and definition of cohesion measures in object-
oriented systems. This framework is intended to be
exhaustive and integrates new ideas with existing
measurement frameworks in the literature. Thus, detailed
guidance is provided so that cohesion measures may be
defined in a consistent and operational way and existing
measures may be selected based on explicit criteria. We
conclude:

¢ The measures generated with this framework are propor-
tions of the maximum possible number of connections
within classes. This leads to the highest level of meas-
urement, the ratio level, which means the most powerful
types of statistical analysis techniques can be performed.

» These measures, however, are not guaranteed to be use-
ful. To be useful, the measures must be indicators of an
external quality attribute of interest specified in the
measurement goal. We believe that measures of internal
product attributes have no inherent significance in isola-
tion. They become useful only if they are related to some
external quality attribute [4].

= Existing measures have been classified according to the
options available for each criterion of the framework.
This classification allows existing measures to be com-
pared and their potential use identified. The classifica-
tion has shown that some particular options of the
framework criteria have no or only few corresponding
measures proposed.

We have also used this framework to review the state-of-
the-art in object-oriented cohesion measurement (full
details are provided in [2]).

References

{11 L. Briand, J. Daly, J. Wiist, “A Unified Framework for
Coupling Measurement in Object-Oricnted Systems”,
Technical Report ISERN-96-14, 1996.

L. Briand, J. Daly, J. Wiist, “A Unified Framework for
Cohesion Measurement in Object-Oriented Systems”,
Technical Report ISERN-97-05, 1997,

(2]

53

J.M. Bieman, B.-K. Kang, “Cohesion and Reuse in an
Object-Oriented System”, in Proc. ACM Svmp, Soft-
ware Reusability (SSR°94), 259-262, 1995.

L. Briand, K. El Emam, S. Morasca, “Theoretical and
Empirical Validation of Software Product Measures”,
Technical Report ISERN-95-03, 1995,

L. Briand, S. Morasca, V. Basili, “Measuring and
Assessing Maintainability at the End of High-Level
Design”, IEEE Conference on Software Maintenance,
Montreal, Canada, September 1993,

L. Briand, S. Morasca, V. Basili, “Defining and Vali-
dating High-Level Design Metrics”, Technical Report,
University of Maryland, CS-TR 3301, 1994,

L. Briand, S. Morasca, V. Basili, “Property-Based
Software Engineering Mcasurement”, [EEE Transac-
tions of Software Engineering, 22 (1}, 68-86, 1996.

D.N. Card, V.E. Church, W.W. Agresti, “An Empirical
Study of Software Design Practices”, IEEE Transac-
tions on Software Engineering 12 (2), 264-271, 1986.

D.N. Card, G.T. Page, EE. McGarry, “Criteria for
Software Modularization™, Proceedings IEEE Eighth
International Conference on Software Engineering,
372-377, 1985.

[10} S.R. Chidamber, C.F. Kemerer, “Towards a Metrics
Suite for Object Oriented design”, in A. Paepcke, (ed.)
FProc. Conference on Object-Oriented Programming:
Systems, Languages and Applications (OOPSLA’S1),
SIGPLAN Notices, 26 (11), 197-211, 1991.

[11] S.R. Chidamber, C.F. Kemerer, “A Metrics Suite for
Object Oriented Design™, IEEE Transactions on Soft-
ware Engineering, 20 (6), 476-493, 1994.

[12] J. Eder, G. Kappel, M. Schrefl, “Coupling and Cohe-
sion in Object-Oriented Systems”, Technical Report,
University of Klagenfurt, 1994,

[13] D.W. Emble, S.N. Woodfield, “Cohesion and Cou-
pling for Abstract Data Types”, 6th International
Phoenix Conference on Computers and Communica-
tions, Arizona, 1987.

[14] B. Henderson-Sellers, “'Software Meirics”, Prentice
Hall, Hemel Hempstaed, U.K., 1996.

[15] M. Hitz, B. Montazeri, “Measuring Coupling and
Cohesion in Object-Oriented systems”, in Proc. Int.
Symposium on Applied Corporate Computing,
Monterrey, Mexico, October 1995.

[16] Y.-5. Lee, B.-S. Liang, S.-F. Wu, F.-J. Wang, “Measur-
ing the Coupling and Cohesion of an Object-Oriented
Program Based on Information Flow”, in Proc. Inter-
national Conference on Software Quality, Manbor,
Slovenia, 1995,

[17] G. Myers, “Composite/Structured Design”, Van Nos-
trand Reinhold, 1978.

(4]

(5]

(6]

(7]

(8]

[9]

Proceedings of the 4th International Software Metrics Symposium (METRICS '97)
0-8186-8093-8/97 $10.00 © 1997 |IEEE

