
A Unified Framework for Cohesion Measurement in Object-Oriented Systems’

Lionel C. Briand John W. Daly
Fraunhofer IESE Fraunhofer IESE

Sauerwiesen 6 Sauerwiesen 6
D-67661 D-6766 1

Kaiserslautern Kaiserslautem
Germany Germany

briand@iese.fhg.de daly@iese.fhg.de

Jtirgen Wiist
Fraunhofer IESE

Sauerwiesen 6
D-6766 1

Kaiserslautern
Germany

wuest@iese.fhg.de

Abstract

Keywords: cohesion, object-oriented, measurement.

1. Introduction

The market forces of today’s software development
industry have begun to place much more emphasis on
software quality. This has led to an increasingly large body
of work being performed in the area of software
measurement, particularly for evaluating and predicting the
quality of software. In turn, this has led to a large number
of new measures being proposed for quality design
principles such as cohesion. Modules of a high quality
software design, among many other principles, should obey
the principle of high cohesion. Stevens ef al., who first

introduced cohesion in the context of structured
development techniques, define cohesion as a measure of
the degree tu which the elements of a module belong
together. In a highly cohesive module, all elements are
related to the performance of a single function. Such
modules are hypothesiscd to he easier to develop, maintain,
and rcusc, and to he less fault-prone. Some empirical
evidence exists to support this hypothesis for systems
developed with structured and object-based techniques; see;
e.g., IX], 191, and [cl.

In object-oriented software, classes replace modules,
with methods and attributes as their elements. In this
context, cohesion is the degree to which the methods and
attributes of a class belong together. Again, recent research
has led to a large number of new cohesion measures for
object-oriented systems. However, because cohesion is a
complex software attribute in object-oriented systems (e.g.,
there are several different mechanisms which are
considered to contribute to the cohesion of a class), and
there has been no attempt to provide a structured synthesis,
our understanding of the state-of-the-art is poor. For
example, hecausc there is no standard terminology and
formalism for expressing measures, many measures are not
fully operationally detined, i.e., there is some ambiguity in
their definitions. As a result, it is difficult to understand how
different cohesion measures relate to one another.
Moreover, it is also unclear what the potential uses of many
existing measures are and how these different mcnsurcs
might he used in a complementary manner. In addition, the
fact that there exists little empirical validation of existing
object-oriented cohesion measures means their usefulness
is not supported by any empirical evidence’.

To address and clarify our understanding of the state-of-
the-art of cohesion measurement in object-oriented systems

43
O-8186-8093-8/97 $10.00 0 1997 IEEE

Proceedings of the 4th International Software Metrics Symposium (METRICS '97)
0-8186-8093-8/97 $10.00 © 1997 IEEE

requires a comprchcnsive framework based on a standard
terminology and formalism. This framework can then he
used to facilitate comparison of existing cohesion
measures, and to support the definition of new cohesion
measures and the selcctiun of existing ones hased on a
particular measurement goal. Analogous research for
coupling measurement is dcscrihcd in [I]. The coupling
framework presented in that paper is considered to he
complementary to the cohesion framework presented here.

2. Motivation

Object-oriented ttlGLS”EttlC”t has become an
increasingly popular research area. This is substantiated by
the fact that recently proposed in the literature are (i)
several different frameworks for coupling and cohesion and
(ii) a large number of different measures for object-oriented
attributes such as coupling, cohesion, and inheritance.
While this is to he welcomed, there are scvcral negative
aspects to the mainly ad hoc manner in which ohject-
oriented measures are being dcvcloped. As neither a
standard terminology or formalism exists, many measures
are expressed in an ambiguous manner which limits their
use. This also makes it difficult to understand how different
measures relate to one another. For example, there are many
different decisions that have to he made when defining a
cohesion measure these decisions have to he made
considering the measurement goal and by defining an
empirical model based on clearly stated hypotheses.
Unfortunately, many of the measures proposed in the
literature arc not the result of clearly documented decisions
and hypotheses. It is therefore often unclear what the
potential uses of existing measures are and how different
cohesion treasures could he used in a complementary
manner to obtain a more detailed picture of the cohesion of
classes in an object-oriented system.

Several authors have introduced different approaches
and proposed measures to characterise cohesion in ohject-
oriented systems, e.g., [IO], [II], [15], [3], 1141, [16], [5],
161. Eder et a[. define a framework aimed at providing
qualitative criteria for cohesion; they also assign relative
strengths to different levels of cohesion they identify within
this framework [121. However, neither this framework nor
the different approaches used have characterised existing
measures to the different dimensions of cohesion that have
been identified. Therefore, the negative aspects highlighted
above are still very prevalent ones. In our review of the
literature, for example, we found I5 different measures of

object-oriented cohesion. Conscqucntly. it is not difficult to
imagine how confusing the werall picture actually is.

To make a serious attempt to improve our understanding
of object-oricntcd cohesion measurement we have to
integrate all existing approaches into a unique theoretical
framework, based on a homogenous and comprchensivc
formalism. A review of existing measures has to he
performed and these measures have to he catcgoriscd
according to the unified framework. This framework will
then he a mechanism with which to compare measures and
their potential use, and allow more rigorous (and ease of)
decision making regarding the definition of new measures
and the selection of existing measures in the context of a
measurement goal. It should also facilitate the evaluation
and empirical validation of cohesion measures by ensuring
that specific hypotheses are provided which link cohesion
measures to external quality attributes. Finally, it should
also help identify the dimensions of cohesion which thus
far have been overlooked, ix., for which there are no
measures defined.

3. Survey of cohesion measurement
approaches and measures

In this section we petiwm a comprehensive survey and
critical review of existing approaches and measures fbr
cohesion in object-oriented systems. In Section 3. I, we
present the existing approachcs and measures. These are
then compared in Section 3.2.

3.1. Existing approaches to measure cohesion
Eder et al. [121 propose a framework aimed at providing

qualitative criteria for cohesion. Chidamher and Kemerer
[IO], [ll], Hits and Montazeri 1151, Bieman and Kang [3],
Henderson-Sellers [l4], Lee et al. 1161, and Briand ef al.
[5], [6] each propose different approaches to measure
cohesion in object-oriented or object-based systems and
define various cohesion measures accordingly.

3.1.1. Framework by Eder et al. [121
Eder et al. [121 propose a framework aimed at providing

comprehensive, qualitative criteria for cohesion in object-
oriented systems hy adapting existing frameworks for
cohesion in the procedural and object-based paradigm to
the specifics of the object-oriented paradigm. They
distinguish between three kinds of cohesion: method, class
and inheritance cohesion. For each type, various degrees of
cohesion are proposed.

I. Method cohesion. Eder et al. apply Myers’ classical
deftnition of cohesion [I71 to methods. Elements of a
method are statements, local variables and attributes of the
method’s class. They define seven degrees of cohesion,
based on the definition by Myers [l7]. From weakest to
strongest, the degrees of method cohesion are:

- Coincidental: The elements of a method have nothing in
common besides being within the same method.

44

Proceedings of the 4th International Software Metrics Symposium (METRICS '97)
0-8186-8093-8/97 $10.00 © 1997 IEEE

Logical: Elements with similar functionality such as
input/output handling are collected in one method.
Temporal: The elements of a method have logical cohe-
sion and are perf(rmcd at the same time.
Procedural: The elements of a method are connected by
some control How.
Commurricutional: ‘Iltc elements of a method are con-
nected by some control ilow and operate on the same set
of data.
Sequerrtial: The elements of a method have communica-
tional cohesion and are connected by a sequential con-
trol flow.
Functional: The elements of a method have sequential
cohesion, and all elements contribute to a single task in
the problem domain. Functional cohesion fully supports
the principle of locality and thus minimizes maintenance
efforts.
2. Class cohesion. Class cohesion addresses the _ - relattonshtps between the elements ot a ctass. ttte elements

of a class are its non-inherited methods and non-inherited
attributes. Eder et ul. use a categorisation of cohesion for
abstract data types by Embley and Wood&Id [I31 and
adapt it to object-oriented systems. There are five degrees
of class cohesion. From weakest to strongest, these are:

Separable: The objects of a class represent multiple
unrelated data abstractions. For instance, the cohesion of
a class is separable, if the methods and attributes can be
grouped into two sets such that any method of one set
invokes no methods and references no attributes of the
other set.
Mu[rifaceted: The objects of a class represent multiple
related data abstractions. The relation is caused by at
least one method of the class which uses all these data
abstractions. If we interpret the attributes of a class as a
relation schema (as in a relational database), the relation
schema would not be in second normal form.
Non-delegated: There exist attributes which do not
describe the whole data abstraction represented by a
class, but only a component of it. The attributes of the
class interpreted as relation schema violate third normal
form. Attributes describing only a component of the data
abstraction should be moved in a class of their own.
Concealed: There exist some useful data abstraction
concealed in the data abstraction represented by the
class. Consequently, the class includes some attributes
and methods which might make another class.
Mod& The class represents a single, semantically mean-
ingful concept.
3. lnhrritance cohesion. Like class cohesion, inheritance

cohesl”” addresses me rerattonstNps between elements ot a
class. However, inheritance cohesion takes all the methods
and attributes of a class into account, i.e., inherited and
non-inherited. Inheritance cohesion is strong if inheritance
has been used for the purpose of defining specialized

children classes. Inheritance cohesion is weak, if it has been
used for the purpose of reusing code. The degrees of
inheritance cohesion are the same as those for class
cohesion.

The definitions of the degrees of cohesion in this
framework are not amenable to operational, automated data
collection. because determining the degree of cohesion of a
given class or method is subjective and must be based on a
semantic analysis of the class or method. The dclinitions
should be used as guidelines to derive syntactically-based
measures which are measuring approximations of these
degrees of cohesion in a particular context.

3.1.2. Approach by Chidamber and Kemerer [lo], [HI
Chidamber and Kemerer base their approach to define

the cohesion of a class on the notion of the degree qf
similarity of the class’ methods. The degree of similarity of
a set M of methods is the number of attributes used in
common by all methods in M, formally denoted by o(M).
Chidamber and Kemerer argue that G(M) itself is not a
suitable measure for cohesion of a class c: if all but one
method in c use the same set A of attributes, and the
remaining method only uses attributes not in A, WC have
o(M) = 0, even though most methods of c are similar.
Instead, Chidamber and Kemerer propose a cohesion
measure LCOM defined as follows I IO]:

Consider a Class C, with methods M,, M,, M,. Let
[I,/ = set of attributes used by method M,. There are n
such sets (I,), {I,,/. LCOM = The number of disjoint
sets formed by the intersection of the n sets.

LCOM is an inverse cohesion measure. A high value of
LCOM indicates low cohesion and vice versa. The above
definition of LCOM has been interpreted in different ways
by different authors. The interpretation by Hits and
Montareri [I51 will be discussed in Section 3.1.3.
Henderson-Sellers offers the f<,llowing interpretation [14]:
LCOMl = I{linlj = 0lVi, j, it j}l, i.e., the number
of pairs of methods in class c having no common attribute
references.

In the definitions of measures LCOM and LCOMI, it is
not clear whether the methods of class C, include inherited
methods or not. Also, even though it is not said explicitly,
we can assume that the set 1; of attributes used by method
Mi only include attributes of class C,, or, at most, attributes
that C, has inherited, but not of any other classes.

In [I I], Chidamber and Kemerer give a new definition of
LCOM:

Consider a Class C, with methods M,, M2, M,. Let
/Ii] = set of instance variables used by method Mi.
There are n such sets (I,}, {I,,). Let
P = {(/;, Ij)ll; n li = 0}, and

45

Proceedings of the 4th International Software Metrics Symposium (METRICS '97)
0-8186-8093-8/97 $10.00 © 1997 IEEE

Q = {(/;,lj)l/;nli#O}

If all n sets {I,). [I,,) are 0 then let P = 0.

LCOM =

i

IPI IQI, if IPI > IQ1
0, otherwise

WC will refer to this version of LCOM as LCOM2.
LCOM2 is the number of pairs of methods in a class having
no common attribute references, IPI, minus the number of
pairs of similar methods, IQ1 However, if IPI < IQl,
LCOMZ is set to zero. The definition of LCOM2 is almost
operational. Again, it is not stated whether inherited
methods and attributes are included or not, and we have to
assume that sets Ii only include attributes of class C,.

3.1.3. Approach by Hitz and Montazeri [El
Hitz and Montazeri base their approach on the work of

Chidamber and Kemerer. They interpret the detinition of
LCOM in [IO] as follows 1151:

Let X denote a class where Ix is the set of its instance
variables and Mx is the set of its methods. Now consider
a simple, undirected graph GdYEj with V=Mx and
E = {(nt,n)~ Vx V/SE /,:(maccessesi)~
(n accesses i)}
LCOM is then detined as the number of connected com-
ponents of G,.

We will refer to this version of LCOM as LCOM3. The
above definition is almost operational. It is not stated
whether inherited methods and attributes are included or
excluded in the sets Ix and MF

Hitz and Montareri identified a problem with acce.n
methods for LCOM3. An ncccss method provides read or
write access to an attribute of the class. Access methods
typically reference only one attribute, namely the one they
provide access to. If other methods of the class use the
access methods, they may no longer need to directly
reference any attributes at all. These methods arc then
isolated vertices in graph G,. Thus, the presence of access
methods artificially decreases the class cohesion as
measured by LCOM?. There is no empirical justification
for this artificial loss of cohesion. To remedy this problem,
Hitz and Montazeti propose a second version of their
LCOM3 measure, where graph G, also has an edge
between vertices representing methods m and II, if nr
invokes n or vice versa:
E = {(m,n)~ VxVi3i~ Ix:((maccesscsi)r,
(n accesses i)) v (m calls n) v (n calls m)}

We refer to this measure as LCOM4.

In the case where Gx consists of only one connected
component (LCOM4=/), the number of edges 1~1 ranges
between IV/-l (mmtmum cohesion) and

IV1 (IV1 - I)/2 (maximum cohesion). Hitz and Montazeri
define a measure C (“connectivity”) which further
discriminates classes having LCOM4=/ by taking into
account the number of edges of the connected component:

We always have C(c) t [O,l] Values 0 and I are taken
for 1~1 = /VI 1 and 1~1 = IVl(IVl - 1)/2, respectively.

3.1.4. Approach by Bieman and Kang [31
The approach by Bieman and Kang to measure cohesion

is similar to that of Chidamber and Kemerer. They also
consider pairs of methods which use common attributes.
However, the manner in which an attribute may be used is
different. Besides attributes used directly by a method m,
indirectly used attributes are also considered. Method m
uses attribute a indirectly, if nr directly or indirectly invokes
a method m’ which uses attribute u. Two methods are
called “connected”, if they directly or indirectly use
common attributes.

The measure TCC (tight class cohesion) is then defined
as the percentage of pairs of public methods of the class
which are connected, i.e., pairs of methods which directly
or indirectly use common attributes.

Measure LCC (loose class cohesion) also considers pairs
of “indirectly connected” methods. If there are methods
m ,,..., m,, such that mi and nt,,, are connected for i=l,...,n-
1, then m, and m,, are indirectly connected. Measure LCC is
defined as the percentage of pairs of public methods of the
class which are directly or indirectly connected. See [3] or
[2] for formal definitions of TCC and LCC.

With respect to inheritance, Bieman and Kang state
three options for the analysis of cohesion of a class.

I. exclude inherited methods and inherited attributes from
the analysis, or

2. include inherited methods and inherited attributes in the
analysis, or

3. exclude inherited methods but include inherited
attributes.
Bieman and Kang identified a problem with constructor

methods for TCC and LCC. Constructor methods provide
the class attributes with initial values and therefore access
most or all of the class’ attributes. If mc is a constructor
method which references al1 attributes of the class, then mc
is connected to any method m which references at least one
attribute of class c. That is, the presence of mc creates many
pairs of directly connected methods. Furthermore, if m, and
mZ are two methods which reference at least one, but not
necessarily the same, attribute of class c, then m, and m2 are
indirectly connected via mc. That is, mc indirectly connects
any two methods which use at lcast one attribute. We see
that the presence of a consttuctor method artificially

46

Proceedings of the 4th International Software Metrics Symposium (METRICS '97)
0-8186-8093-8/97 $10.00 © 1997 IEEE

increases cohesion as measured by TCC and LCC, which is
not empirically justified. Bieman and Kang therefore
exclude c”“str”ctors (and also destructors) from the
analysis of cohesion [3].

3.1.5. Approach by Henderson-Sellers Cl41
Henderson-Sellers sets out to define a cohesion measure

having the following properties:

* The measure yields 0, if each method of the class refer-
cnces every attribute of the class (this situation is called
“perfect cohesion” by Henderson-Sellers).

- The measure yields I, if each method of the class refer-
cncrs only a single attribute.

- Values between 0 and 1 are to he interpreted as percent-
ages of the perfect value.
Henderson-Sellers proposes the following measure,

referred to as LCOM5, which satisfies the above properties:

Consider a set of methods (Mi] (i=l,...,m) accessing a
set of attributes (A~) (i=l,...,a). Let the number of meth-
ods which access each attribute he p(Ai)

; i P(A,~) -m
LCOMS = ‘=I1 --171

Again, it is unclear whether inherited methods and
attributes are accounted for or not.

3.1.6. Approach by Lee et al. 1161
Lee ef al. propose a set of cohesion measures based on

information How through method invocations within a
class. For a method m implemented in class c, the cohesion
of m is the number of invocations to other non-inherited
methods of class c, weighted by the number of parameters
of the invoked methods. The more parameters an invoked
method has, the more inf<>mmtion is passed, the stronger
the link between the invoking and invoked method. The
cohesion of a class is the sum of the cohesion of its non-
inherited methods. The cohesion of a set of classes is
simply the sum of the cohesion of the classes in the set. The
definitions of these measure (referred to as ICH for
inftxmation-flow based cohesion) use a formalism that
would he rather lengthy to reproduce here. See [161 or [21
for formal definitions of these measures.

3.1.7. Approach by Briand et al. [51, [61
Briand et al. define a set of cohesion measures for

object-based systems (such as Ada implementations). In the
following, we adapt these measures to object-oriented
systems. We make one simplification: the original measures
were defined for so-called “software parts”, i.e., a module
or a hierarchy of nested modules. We define the adapted
object-oriented measures at the class level, but do not
consider nested classes. Although some programming
languages allow the definition of nested classes, nesting of
classes is not a major issue in object-oriented design; it can

be avoided entirely through aggregation (delining attributes
as an instance of another class).

For the adaption of the cohesion measures to object-
oriented systems, WC see a class as a collection of data
declarations and methods. Data declarations are (i) local,
public type declarations, (ii) the class itself (as an implicit,
public type), and (iii) public attributes. A data declaration (I
interacts with another data declaration h, if a change in u’s
declaration or use may cause the need for a change in b’s
declaration or use. We say there is a DD-inreractinn
between data declarations a and b, or, shorter, u DD-
interrrcts with b.

Examples:

* If the definition of a public type f uses another public
type f’ , there is a DD-interaction between f’ and f.

- If the definition of a public attribute a uses a public type
r, there is a DD-interaction between f and a.

* If a public attrihutc a is an array and its definition uses
public constant a’, there is a DD-interaction between a’
and a.
DD-interactions need not he confined to one class. There

can he DD-interactions between attributes and types of
different classes. The DD-interaction relationship is
transitive. If a DD-interacts with h and b DD-interacts with
c, then a DD-interacts with c.

Data declarations also can interact with methods. There
is a DM-irrterucrion between data declaration a and method
m, if a DD-interacts with at least one data declaration of m.
Data declarations of methods include their parameters,
return type and local variables. For instance, if a method m
of class c takes a parameter of type class c, there is a DM-
interaction between m and the implicit type declaration of
class c.

All DD-interactions between data declarations, and DM-
interactions involving parameters and return types can he
determined from the class interface, and thus are available
early in the development process. We define Cl(c) (C1 ftx
cohesive interactions) to hc the set of all such DD- and
DM-interactions. Max(r) is the set of all possible DD- and
DM-interactions in the class interface. Measure RCI (ratio
of cohesive interactions) is then defined as

RCI ranges between 0 and I, where values 0 and I
indicate minimum and maximum cohesion. respectively.

At the end of the high level design phase, designers will
usually have a rough idea of which interactions there exist
besides those that can he determined from the class
interface. Three casts are possible:

41

Proceedings of the 4th International Software Metrics Symposium (METRICS '97)
0-8186-8093-8/97 $10.00 © 1997 IEEE

Some interaction will he known to exist. We will denote
the set of all known interactions by K(c). Notice that
C/(c) c K(c).
Some interactions may or may not exist. the available
information is not suflicient at the current development
stage. WC denote the set of these unknown interactions
by U(c).
The remaining interactions are known not to exist.
Using this additional information, we can define three

more measures:

The neutral ratto of cohesive interactions:
NRC/(c) = IK(c)I/(IMux(c)I - iU(c)tI.
(unknown interactions are not taken into account).
The pessimistic ratio of cohesive interactions:
PRCI(C) = ~K(c)~/IM~x(~)I,
(unknown interactions are considered as if they were
known not to he actual interactions).
The optimistic ratio of cohesive interactions:
ORCl(c) = (/K(c)1 + lU(c)i)/IMnx(c)l,
(unknown interactions are considered as if they were
known to he actual interactions).

3.2. Comparison of approaches

A precise comparison of the approaches shows there are
differences in the manner in which cohesion is addressed.
Another reason for the differences in the approaches may
be the different objectives pursued by the approaches. For
example, Briand ef al. examined only early design
information to investigate potential early quality indicators
while other authors investigated information mainly
available at low level design and implementation; hence
differences are found in the mechanisms that make a class
cohesive. A second reason is that some of the issues dealt
with by some authors are considered to he subjective and
too difficult to measure automatically. For example, the
degrees of method or class cohesion (addressed by Eder et
al.) is not something which can he easily determined
automatically or even manually. The following sections
discuss in detail the signilicant differences between the
various approaches and what can he learned from these
differences.

3.2.1. Types of connection
By “type of connection” we refer to the mechanisms that

link elements within a class and thus make a class cohesive.
In the review of cohesion measures, we can distinguish two
categories:
. In the first category, we find measures focused on count-

ing pairs of methods that use or do not use common
attributes. Chidamher and Kemerer’s idea of “similar”
methods fails into this category; Hitz and Montareri
have reused this idea in their approach. The approach by
Bieman and Kang also is based on counting pairs of
methods that access common attributes.

- In the second category, measures capture the extent to
which individual methods use attrihutcs or locally
defined types (LCOMS, RCI), or invoke other methods
(ICH).
It is possible to have one measure count different types

of connections. For instance, measures LCOM4, TCC and
LCC are focused on counting pairs of methods using
common attributes, and method invocations.

The ICH suite of measures are based on method
invocations solely. The attributes of a class arc not
considered at all. This is in sharp contrast to the definitions
of all other measures.

3.2.2. Domain of the measures
Most of the reviewed measures are defined at the class

level. However, finer and coarser domains are also
conceivable.

For an individual attribute or method, we could count the
number of other class elements to which it is connected,
thus analysing how closely related the attribute or
method is to other elements of its class. This could also
he interpreted as the degree to which the attribute or
method contributes to the cohesion of its class. From
such an analysis, we could draw conclusions as to how
well the attribute or method “fits” into the class, or
whether it should perhaps be moved to another class.
We can quantify the cohesion of a set of classes or the
whole system based on the cohesion of each of the par-
ticipating classes.
The ICH suite of measures is an example how a measure

defined at the method level is scaled up to the class level
and sets of classes. However, this done in a manner such
that the measures are additive, which may not he a desirable
property of a cohesion measure. For instance, if two
unrelated, hut highly cohesive classes c and d xc merged
into a single class e, the cohesion of the class e would he
the sum of the cohesion of the separate classes c and d. That
is, class e has an even higher cohesion than any of the
separate classes. This is counter-intuitive. as an object of
class e represents two separate, semantic concepts and
therefore should be less cohesive.

3.2.3. Direct and indirect connections
Some of the approaches to measure cohesion include the

analysis of indirectly connected elements. Indirect
connections are of potential interest when defining criteria
for when to break up a class. To illustrate this, we apply
measures LCOMI and LCOM3 to the example classes
depicted in Figure I. In the figure, a class c is represented
by a graph G, as used in the definition of measure LCOM3.
The vertices are the methods of c, and there are edges
between similar methods, i.e., methods which use a
common attribute. This is the type of connection both
LCOMI and LCOM3 focus on. LCOMI counts the number
of pairs of methods in a class with no common attribute
references. Because each class in Figure I has six methods
and tive pairs of similar methods, we have

48

Proceedings of the 4th International Software Metrics Symposium (METRICS '97)
0-8186-8093-8/97 $10.00 © 1997 IEEE

LCOMI(c)=LCOMI(& i.e.. the classes are equally
cohesive according to measure LCOMI. LCVM3(c) 1s
detined as the numher of connected components of graph
G,. In Figure I, it is LCOM3(c)= I and LCOM3(d)=2, i.e.,
class c is more cohesive than class d according to measure
LCOM3. This rellects nn important difference between
classes c and d: in class c, each method is directly or
indirectly connected with every other method. In class d, on
the other hand, there are pairs of methods which are not
even indirectly connected. This may indicate that the
methods should not be encapsulated in the same class. Note
that there could be reasons why the methods should he
encapsulated together in one class anyway, e.g., because of
method invocations from one connected component to the
other.

class c class d
Figure 1. Example classes

Ideally, the graph G, consists of only one connected
component (LCOM3(c)=I). Hitr and Montazeti remark,
that class c can still he more or less cohesive. The number
of edges of graph C, can range between n - I (minimum
cohesion) and n(n - I)/2 (maximum cohesion), where n
is the number of vertices of G,. In other words, the
discriminative power of measures counting the number of
connected components (such as LCOM3 or LCOM4) is
limited, because a connected component can show various
degrees of connectivity. Therefore, Hitz and Montazeri
proposed measure C. which is a normalized count of the
number of edges of G,. Measure C can he used t” further
discriminate classes for which graph G, has only one
connected component. However, using two measures to
completely determine the cohesion of a class has the
drawback that cohesion is no longer defined on an interval
scale, but only on an ordinal scale. In addition, measure C
is not necessarily a better cohesion measure since it may
not he possible to define classes with fully connected
components.

TCC and LCC are also measures which take indirect
connections into account, LCC even in two different ways.
First, both measures count pairs of “connected” methods,
i.e., methods which directly or indirectly use a common
attribute. Method m uses an attribute a indirectly, if CI is
used by a method which is directly or indirectly invoked by
m. Therefore, TCC and LCC take indirect method
invocations into account. TCC counts the number of pairs
of connected methods. It is therefore similar to measure C,
which counts the number of pairs of “similar” methods.
LCC counts the number of directly or indirectly connected
pairs of methods, and this is the second way in which
indirect connections are accounted for by LCC. This again
is related to the idea of counting connected components in

LCOM? or LCOM4: Consider a graph G where vertices are
mcthods and there are edges hctwcen connected methods.
Then, “two methods nr and n are indirectly conncctcd” is
equivalent to “methods nz and II lie within the same
connected component of graph G”. The condition “each
method is directly or indirectly connected to every other
method” is equivalent to “graph G consists of only one
connected component”. A low value of LCC corresponds
with a large numher of connected components of G. In that
respect, LCC is conceptually similar to LCOM3 and
LCOM4.

LCOMS counts for each attribute how many methods
access the attribute. Only direct connections between
methods and attributes are considered. In a completely
cohesive class, each attribute is accessed by every method.
Whether such a design is desirable is unknown.

The RCI measures are a count of interactions bctwcen
elements in the class. In a completely cohesive class, each
element interacts with every other element. Because the
interaction relationship is transitive, there need not be a
direct interaction between all pairs of elements in order to
have a maximum RCI. As a consequence, RCI does not
have the drawhack of LCOMS that direct interactions
between all elements are required to get a maximum value.

We summarize the results of this discussion:

Indirect connections appear to be a better criterion than
direct connections when indicators for when to split up a
class are needed.
With direct connections. each clement of a class needs to
be directly connected to every other element in order for
the class to have maximum cohesion. This appears to he
an unrealistic requirement.
Measures accounting for indirect connections are less
discriminative; maximum cohesion can he attained for a
larger number of classes.

3.2.4. Inheritance
For the analysis of cohesion of a class c, we have several

options available concerning the attributes and methods c
has inherited. Two straightforward options arc:

I. exclude inherited attrihutes and methods from the analy-
sis, or

2. include inherited attributes and methods in the analysis.
These two options form the distinction between class

and inheritance cohesion in the framework by Eder et al.
(see Section 3.1.1). A child class c represents an extenston
of its parent class d. If we exclude inherited attrihutes and
methods, we analyse to what degree this cxtension
represents a single semantic concept. If we include
inherited attributes and methods, we analyse whether class
c as a whole still represents a single semantic concept.
These are twa quite different aspects, and both should he
considered.

49

Proceedings of the 4th International Software Metrics Symposium (METRICS '97)
0-8186-8093-8/97 $10.00 © 1997 IEEE

Bieman and Kang offer a third option for the analysis of
cohesion [3]:

3. include inherited attributes, hut exclude inherited meth-
ods from the analysis.
Biemnn and Kang do not provide any rationale for this

option.

A fourth alternative would he to exclude inherited
attributes hut include inherited methods. This of course
makes little sense, as inherited methods can only access
inherited attributes.

With the exception of measures TCC, LCC and ICH, the
influence of inheritance apparently has not heen addressed
in the definition of the reviewed cohesion measures. In the
original definition of the RCI measures, inheritance is not
addressed, because these measures were dctined in context
of object-based systems.

3.2.5. Access methods and constructors
In object-oriented design, classes usually have %xess

methods”. An access method provides read or write access
to an attribute of the class. Access methods typically
reference only one attribute, namely the one they provide
access to. Thus, many pairs of access methods can he built,
which do not use any common attributes. This constitutes a
problem for measures which count such pairs (i.e.,
LCOMI, LCOM2, and LCOM?).

In addition, if other methods of the class use the access
methods, they may no longer need to directly reference any
attributes at all. Therefore, the presence of access methods
artificially decreases the class cohesion for measures based
on method-attributes references. In the definitions of
LCOM4 and C, this problem has been solved by adding
method invocations to graph C, (see Section 3.1.3). In the
dclinitions of TCC and LCC, this problem is circumvented
by introducing “indirectly” used attributes: if a method m
invokes an access method, m indirectly uses the attributes
accessed hy the methods.

Constructor methods provide the class attributes with
initial values and therefore access roost or all of the class
attributes. The presence of such a method constitutes a
problem for measures counting “similar” or “connected”
methods and indirect connections (LCOM3, LCOM4 and
LCC). As explain in Section 3.1.4, the constructor method
creates an indirect connection hetween any two methods
which use at least one attribute, and artificially increases
cohesion. Destructors are less problematic, because they do
not provide attributes with values and therefore do not need
to reference all attributes.

3.2.6. Summary and conclusions
From the above discussion we can see that there exists a

variety of decisions to be made during the definition of a
cohesion measure. It is important that decisions are based
on the intended application of the measure if the measure is
to be useful. When no decision for a particular aspect can

hc made, all alternatives should he investigated empirically.
A second observation is that because the different aspects
of cohesion are widely indcpcndent of each other, a large
number of cohesion measures could he defined this
detines the problem space for cohesion measurement
research in object-oriented systems.

4. A unified framework for cohesion
measurement

In this section, a new framework for cohesion in object-
oriented systems is proposed. The framework is defined on
the basis of the issues identified by comparing the various
approaches to measure cohesion (Section 3.2) and the
discussion of existing measures. The objective of the
unified framework is to support the comparison and
selection of existing cohesion measures with respect to a
particular measurement goal. In addition, the framework
should provide guidelines to support the definition of new
measures with respect to a particular measurement goal
when there are no existing measures available. The
framework. if used as intended, will

- ensure that measure delinitions are hased on explicit
decisions and well understood properties,

- ensure that all relevant alternatives have been considered
for each decision made,

- highlight dimensions of cohesion for which there are
few or no measures dclincd.
The framework consists of five criteria, each criterion

determining one basic aspect of the resulting measure.
First, we describe each criterion: what decisions have to he
made, what are the available options, how is the criterion
reflected by the cohesion measures in Section 3.1. We then
briefly discuss in Section 4.2 how the framework can be
used to derive cohesion measures. For each criterion, we
have to choose one or more of the available options which
will be strongly influenced by the stated measurement goal.
Note that these criteria are not sufficient in isolation; other
aspects such as properties of measures (e.g., those proposed
in [7]) and results from empirical validation studies must be
also considered. Due to space constraints, the influence of
these aspects cannot he addressed here.

4.1. Framework criteria
4.1.1. Type of connection

By type of connection we mean the mechanism that
makes a class cohesive. In Table 1 we summarize types of
connections used by the measures in Section 3. I.

A connection within a class is a link hetwecn elements
of the class (attributes, methods, or data declarations). For
each type of connection, the elements arc listed in the
columns “Element I” and “Element 2”. Column
“Description” explains the type of connection. Column
“Measures” lists for each type of connection, which of the
reviewed measures use that type of connection. The

50

Proceedings of the 4th International Software Metrics Symposium (METRICS '97)
0-8186-8093-8/97 $10.00 © 1997 IEEE

Table 1. Types of connection

attribute a of class c in common (“connected

numbers in column “#” are used later to reference the tvoes Table 3 shows which measures in Section 3.1 cotmt
of connections.

4.1.2. Domain of the measure
The domain of the measure specifies the objects to be

measured (methods, classes etc.). Table 2 shows possible
domains for the cohesion measures, and for each domain,
the measures from Section 3.1 having that domain.

Table 2. Mapping of measures to domains

set of classes ICH
system

As we see, most measures are defined at the class level.
Measures defined at the attribute and method level are also
conceivable. These measures count the number of
connections a method or attribute has to other elements of
the class. Measures defined on the class level can be scaled
up to sets of classes or the whole system.

The aspects can be dealt with in the order they are listed
here.

As we found in the review of the cohesion measures, we
have two options available concerning the attributes and
methods c has inherited for the analysis of cohesion of a
class c:

4.1.3. Direct or indirect connections I. Exclude inherited attributes and methods from the analy-
We have to decide whether to count direct connections

only or also indirect connections. For example, consider a
method “1, which is “similar” to a method mZ (connection
type #3), which in turn is similar to method m.+ Then
methods m, and mz are directly connected through a
connection of type #3, as are methods m2 and rn+ Methods
m, and m, are indirectly connected.

sts.
A child class c represents an extension of its parent class
d. If we exclude inherited attributes and methods, we
analyse to what degree this extension represents a single
semantic concept.

2. Include inherited attributes and methods in the analysis.
If we include inherited attributes and methods, we ana-
lyse whether class c as a whole still represents a single
semantic concept.

direct connections only and which also count indirect
c”nnectl”ns.

Table 3. Measures counting direct and
indirect connections

TYPO MeklSUreS
direct LCOMI, C, LCOM2, LCOMS, TCC, ICH

indirect LCOM3, LCOM4, LCC, RCI, NRCI, ORCI,
PRCI

4.1.4. Inheritance
Two aspects are to be considered with respect to

inheritance:

* How do we assign methods and attributes to classes?
* For method invocation: shall we consider static or poly-

morphic invocations’?

From the measures defined in Section 3.1, ICH
conforms to the first option, for TCC and LCC, both

51

Proceedings of the 4th International Software Metrics Symposium (METRICS '97)
0-8186-8093-8/97 $10.00 © 1997 IEEE

options have been suggested. In the definition of the other
measures. inheritance apparently has not been addressed.

Po1wmrphi.m
The next question is how to deal with polymorphism.

This will be relevant only if the chosen type of connection
involves method invocations (types #2 and #4), for the
special case that a method of a class c polymorphistically
invokes a method of its ancestor(s). We have two options:

- Account f& polymorphism, i.e., for a method m, we
consider connections between m and all methods m’
that can possibly be invoked in the implementation of m
through polymorphism and dynamic binding.

- Do not account for polymorphism, i.e., for a method m,
we count connections between m and methods m’ that
are statically invoked.
Table 4 shows which measures in Section 3.1 account

for polymorphism and which do not. Only measures
counting connections of types #2 and #4 are considered in
the table.

Table 4. Mapping of measures to opfions for
accounting for polymorphism

TYPO MGlSUre
account for polymorphism ICH

do not account for LCOM4, C, TCC, LCC
polymorphism

4.15 Access methods and constructors
As we have seen in the rcvicw of the measures, access

methods and constructors may artilicially increase or
decrease the values for cohesion measures. How to account
for access methods and constructors should be a conscious
decision in the definition of a cohesion measure and is
therefore part of the framework.

Access methods
Access methods cause problems for measures which

count references to attributes (connection types #I and #3).
Instcad of referencing an attribute directly, the access
method may be used, which is not accounted for by these
types of connections. Thus, the number of references to
attributes is artificially decreased. A solution to this
problem is to count the invocation of an access method as
reference to the attribute. However, this solution may be
difficult to implement in practice because it is not always
possible to recognize access methods automatically.

Access methods also cause problems for measures that
count pairs of methods which use common attributes
(connection types #3 and #4). Because access methods
usually access only one attribute, many pairs of methods
that do not reference a common attribute can be formed
using access methods. Thus, the cohesion is artilicially
decreased. A solution to this problem is to exclude access
methods from the analysis.

The available options for how to deal with access
methods arc summarized in Table 5. Column
“Connections” indicates the types of connections for which
the respective option is applicable.

Table 5. Options to account for access methods

~
Do nothmg (treat access meth-

access method as a reference to hi
The measures as dclined in Section 3.1 all conform to

option I.

Constructors cause problems for measures that count
pairs of methods which use common attributes (connection
types #3 and #4). Constructors typically reference all
attributes. This artificially increases the cohesion of the
class, because it generates many pairs of methods that USC a
common attribute. A solution to this problem is to exclude
constructors from the analysis. We thus have two options
how to account for constructors, which are summarized in
Table 6.

Table 6. Options to account for constructors

Option Description Connection
4 Do nothing (treat constructors All types

as regular methods)
5 Exclude constructors from the #3, #4

analysis

The measures in Section 3.1 all conform to option 4,
except measures TCC and LCC, which take option 5.

4.2. Application of the framework

We apply the framework to select existing measures or
to derive new measures for a given measurcmcnt goal. Note
that the framework is not intended to be used as a means to
search cohesion measures in an ad-hoc manner, or to
generate an exhaustive set of theoretically possible
cohesion measures. Applying the framework implies
following two steps:

I. For each criterion of the framework, choose one or more
of the available options basing each decision on the
objective of measurement.

2. Choose the existing measures accordingly or, if none
exist to match the decisions made, construct new cohe-
sion measures. Remember that properties such as those
prcsentcd in 171 can also he used to guide the definition
and theoretical validation of new measures. For instance,
Briand et al. suggest that a cohesion measure should be

52

Proceedings of the 4th International Software Metrics Symposium (METRICS '97)
0-8186-8093-8/97 $10.00 © 1997 IEEE

normalized to allow meaningful comparison of the cohe-
sion of classes which have diffcrcnt sizes 171.
As a result of applying the framework criteria, the set of

connections of interest for a class will he identified. For the
definition of the measure, we then need two figures: the
number of actual connections of intcrcst prcscnt, and the
maximum number of possible connections of interest. We
can thus define the cohesion measure as

number of actual connections of interest
maximum number of possible connections of interest

This yields a normalized cohesion measure ranging
between 0 and I.

5. Conclusions
We have provided a framework for the comparison,

evaluation, and definition of cohesion measures in object-
oriented systems. This framework is intended to be
exhaustive and integrates new ideas with existing
measurement frameworks in the literature. Thus, detailed
guidance is provided so that cohesion measures may be
defined in a consistent and operational way and existing
measures may he selected based on explicit criteria. We
conclude:

The measures generated with this framework are propor-
tions of the maximum possible number of connections
within classes. This leads to the highest level of meas-
urement, the ratio level, which means the most powerful
types of statistical analysis techniques can be performed.
These measures, however, are not guaranteed to be “se-
ful. To be useful, the measures must be indicators of an
external quality attribute of interest specified in the
measurement goal. We believe that measures of internal
product attributes have no inherent significance in isola-
tion. They become useful only if they are related to some
external quality attribute [4].
Existing measures have been classified according to the
options available for each criterion of the framework.
This classification allows existing measures to be com-
pared and their potential use identified. The classifica-
tion has shown that some particular options of the
framework criteria have no or only few corresponding
measures proposed.
We have also used this framework to review the state-of-

the-art in object-oriented cohesion measurement (tull
details are provided in [2]).

References
[II

PI

L. Briand, J. Daly, .I. Wiist, “A Unified Framework for
Coupling Measurement in Object-Oriented Systems”,
Technical Report ISERN-96.14, 1996.
L. Briand, J. Daly, J. Wiist, “A Unified Framework for
Cohesion Measurement in Object-Oriented Systems”,
Technical Report ISERN-97.05, 1997.

L31

141

[51

161

I71

WI

Pl

J.M. Bieman. B.-K. Kang, “Cohesion and Reuse in an
Object-Oriented System”, in Proc. ACM Symp. Soft-
ware Reusabiliq (SSR’94), 259-262, 1995.
L. Briand, K. El Emam, S. Morasca, “Theoretical and
Empirical Validation of Software Product Measures”,
Technicul Report ISERN-95.03, 1995.
L. Briand, S. Morasca, V. Basili, “Measuring and
Assessing Maintainability at the End of High-Level
Design”, IEEE Confererlce on Sojiware Maintenance,
Montreal, Canada, September 1993.
L. Briand, S. Morasca, V. Basili, “Defining and Vali-
dating High-Level Design Metrics”, Technical Report,
Universi~ ojMar$und, CS-TR 3301, 1994.
L. Briand, S. Morasca, V. Basili, “Property-Based
Software Engineering Measurement”, IEEE Transac-
tions c$Sojiwure Engineering, 22 (I), 68-86, 1996.
D.N. Card, V.E. Church, W.W. Agresti, “An Empirical
Study of Software Design Practices”, IEEE Transac-
tions on Sofware Engineering 12 (2) 264.271, 1986.
D.N. Card, G.T. Page, F.E. McGarry, “Criteria for
Software Modularization”, Proceedings IEEE Eighth
lr~terrmtionul Conjerence on Sofrware Engineering,
372.377, 1985.

[IO] S.R. Chidamber, CF. Kemerer, “Towards a Metrics
Suite for Object Oriented design”, in A. Paepcke. (ed.)
Pi-or. Conference on Object-Oriented Programming:
Systems, Languages and Applicazions (OOPSLA’Y I),
SIGPLAN Notices, 26 (1 I), 197.21 I, 1991.

[I I] S.R. Chidamber, C.F. Kemerer, “‘A Metrics Suite for
Object Oriented Design”, IEEE Transactions on S@
wai-e Engineering, 20 (6), 476.493, 1994.

1121 1. Eder, G. Kappel, M. Schrefl, “Coupling and Cohe-
sion in Object-Oriented Systems”, Technical Report,
University of Klagenfurt, 1994.

[I31 D.W. Emblc, S.N. Woodfield, “Cohesion and Cou-
pling for Abstract Data Types”, 6th lnrernarinnal
Phoenix Conference on Computers und Communicu-
tinns, Arizona, 1987.

[I41 B. Henderson-Sellers, “Software Metrics”, Prentice
Hall, Hemel Hempstaed, U.K., 1996.

[I51 M. Hitz, B. Montazeri, “Measuring Coupling and
Cohesion in Object-Oriented systems”, in Pmt. Int.
Symposium on Applied Corporate Computing,
Monterrey, Mexico, October 1995.

[I61 Y.-S. Lee, B.-S. Liang, S.-F. Wu, F.-J. Wang, “Measur-
ing the Coupling and Cohesion of an Object-Oriented
Program Based on Information Flow”, in Proc. Inter-
national Conference on Sojtware Qualit)‘, Maribor,
Slovenia, 1995.

[171 G. Myers, “Composite/Structured Design”, Vun Nos-
trand Reinhold. 1978.

53

Proceedings of the 4th International Software Metrics Symposium (METRICS '97)
0-8186-8093-8/97 $10.00 © 1997 IEEE

