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Abstract

The design of software is often depicted by graphs
that show components and their relationships. For ex-
ample, a structure chart shows the calling relationships
among components. Object-oriented design is based on
various graphs, as well. Such graphs are abstractions
of the software, devised to depict certain design deci-
sions. Coupling and cohesion are attributes that sum-
marizes the degree of interdependence or connectivity
among subsystems and within subsystems, respectively.
When used in conjunction with measures of other at-
tributes, coupling and cohesion can contribute to an
assessment or prediction of software quality.

Let a graph be an abstraction of a software sys-
tem and let a subgraph represent a module (subsystem).
This paper proposes information theory-based measures
of coupling and cohesion of a modular system. These
measures have the properties of system-level coupling
and cohesion de�ned by Briand, Morasca, and Basili.

Coupling is based on relationships between modules.
We also propose a similar measure for intramodule cou-
pling based on an intramodule abstraction of the soft-
ware, rather than intermodule, but intramodule cou-
pling is calculated in the same way as intermodule cou-
pling. We de�ne cohesion in terms of intramodule cou-
pling, normalized to between zero and one. We illus-
trate the measures with example graphs. Preliminary
analysis showed that the information-theory approach
has �ner discrimination than counting.
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1. Introduction

The essence of high-level software design is identi-
�cation of components and their relationships. The
existence of nodes in a software design diagram and
the structure of relationships depict design decisions.
For example, software architectures are often repre-
sented by a variety of graphs [32]. Another example is
a structure chart, which depicts the hierarchy of con-
trol among procedural components, where the calling
component invokes the called component.

The software engineering community often discusses
software design in terms of vague concepts, such as
complexity, coupling, or cohesion. Software-design text
books admonish would-be designers to \reduce cou-
pling among modules and improve cohesion within
modules" [27, 29]. Only in hindsight can one identify
good and bad decisions. However, a balanced set of
software design measurements early in the design pro-
cess can give insight into design attributes, and may be
inputs to models that predict software quality. If the
attributes or predicted quality are unsatisfactory, then
one can revise the design before changes become too ex-
pensive. Although many software complexity metrics
have been proposed, fewer coupling and cohesion mea-
sures have been proposed [7, 8, 15]. Recent research
has focused on various kinds of coupling and cohesion
in object-oriented designs [6, 9, 10, 13, 16, 17].

Briand, Morasca, and Basili, propose a set of proper-
ties in a formal framework to de�ne coupling and cohe-
sion more precisely [11, 12]. Coupling and cohesion are
the names of families of measures on graphs that have
certain properties in common. More recently, Morasca
and Briand extended their framework from graphs (bi-
nary relations) to relations in general [25].

Information theory is a promising foundation for
software measurement that accounts for patterns in
software attributes [1, 2, 3, 19]. This paper proposes
speci�c measures based on information theory, namely,
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This is similar to Figure 2 in [11].

Figure 1. Example of a Modular System

intermodule coupling, intramodule coupling, and cohe-
sion. Intermodule coupling is ordinary coupling, as de-
�ned by Briand, Morasca, and Basili [11]. Intramodule
coupling is similar, but measures a di�erent subgraph.
Cohesion is de�ned in terms of intramodule coupling,
normalized to between zero and one, as prescribed by
Briand, Morasca, and Basili [11]. These measures can
be used to measure many kinds of software design ab-
stractions, and thus, many kinds of software coupling.
We illustrate the measures with examples.

2. Intermodule Coupling

Briand, Morasca, and Basili [11] propose a set of
properties that de�nes the concept coupling of a mod-
ular system where a module is a subsystem. Figure 1
is an example of a modular-system graph. The mod-
ules (dashed boxes) partition the nodes in the system.
Table 1 summarizes the properties of the coupling of a
modular system [11]. We reserve the term coupling of
a modular system for measures that have these proper-
ties. The discussion below indicates how these proper-
ties in
uenced the design of our measure.

2.1. Measurement protocol

A measurement protocol is a set of conditions that
assures consistent repeatable measurement of an at-
tribute [22]. A valid protocol is independent of the
measurer and the measurement environment. It is also
compatible with the desired unit of measure and the
purpose of the measurement.

Table 1. Properties of Coupling
Concept/Properties
Coupling of a Modular System:

1. Nonnegativity. Coupling of a modular system is
nonnegative.

2. Null value. Coupling of a modular system is null
if its set of intermodule edges is empty.

3. Monotonicity. Adding an intermodule edge to a
modular system does not decrease its coupling.

4. Merging of modules. If two modules, m1 and m2,
are merged to form a new module, m1[2, that re-
places m1 and m2, then the coupling of the modu-
lar system with m1[2 is not greater than the cou-
pling of the modular system with m1 and m2.

5. Disjoint module additivity. If two modules, m1

and m2, which have no intermodule edges be-
tween nodes in m1 and nodes in m2, are merged
to form a new module, m1[2, that replaces m1

and m2, then the coupling of the modular system
with m1[2 is equal to the coupling of the modular
system with m1 and m2.

We begin with any measurement protocol that re-
sults in a graph representing some aspect of software
design. Many design methods produce graphs as arti-
facts. Software is the accumulation of a large number
of decisions on many levels, from those very close to
the code to those that constitute the system architec-
ture. A design abstraction represents a set of design
decisions that are related to each other, and each deci-
sion is an element of information. An artifact created
during the design phase represents the design decisions
made at that time, and embodies the abstraction of the
software that was used by the designer.

Various protocols can result in di�erent abstractions
of software, and thus, result in di�erent measures. For
example, Briand, Daly, and W�ust survey numerous
proposed measures of coupling and cohesion for object-
oriented designs [9, 10]. The measures are based on var-
ious abstractions, such as class inheritance, class type,
method invocation, and class-attribute references, and
thus, measure various software attributes. Our ap-
proach is compatible with all of these abstractions, as
well as graphical abstractions, such as call graphs, for
the procedural development paradigm.

Given an abstraction of software represented graph-
ically as a modular system, MS , with n nodes parti-
tioned into modules [11], we make a further abstraction
for coupling. It is not necessary forMS to be a directed
graph. We represent the system's environment by one
additional disconnected node to represent the fact that



interfaces to the environment of the system are not of
interest here. Consider the subgraph, S, consisting of
all nodes in MS plus the environment node, and all
intermodule edges. The end points of an intermod-
ule edge are not in the same module. Without loss of
generality, index the environment node as i = 0, and
the nodes in MS as i = 1; : : : ; n. It is not necessary
for subgraph S to be a connected graph. Because dia-
grams in software engineering, such as structure charts,
identify each node with a component name, we choose
an abstraction that maintains a distinct identity for
each relationship. For example, Figure 2 depicts the
intermodule-edges subgraph, S, for the modular sys-
tem in Figure 1. (The table in Figure 2 is discussed
below.)

We choose this subgraph for measurement because
the properties of coupling in Table 1 focus on inter-
module edges. In particular, the Monotonicity Prop-
erty speci�es the incremental e�ect of adding just one
intermodule edge. Conversely, the DisjointModule Ad-
ditivity Property requires the absence of intermodule
edges between two modules. Moreover, the Merging
of Modules Property allows for conversion of an inter-
module edge into an intramodule edge upon merger.

In order to analyze the pattern of intermodule re-
lationships, we label each node with the set of edges
that are incident to it. A convenient representation of
the graph is a nodes � edges table where each cell in-
dicates whether the node is an end point of the edge,
or not. Then each node's label is the binary pattern of
values in a row of the table. Figure 2 also shows the
nodes � edges table of S. (Column pL(i) is explained
below.) The abstraction of a nodes � edges table is
an instance of an object-predicate table, where nodes
are objects and each predicate is of the form, \Is this
node related to another node by this edge?" Van Em-
den shows that object-predicate tables are useful for
analysis of complex relationships among objects [33].

In summary, we begin with any protocol that results
in a graphical abstraction of a modular system, and
then translate that into an nodes � intermodule-edges
table. Because object-predicate tables are suitable for
relations in general, future research will extend this to
more general measurement protocols [25].

2.2. Measurement instrument

A measurement instrument is a tool for mapping an
abstraction of software to a number or category [22].
An instrument is usually designed to detect a particu-
lar unit of measure, and assures that each unit of an
attribute is equivalent within the constraints of mea-
surement error. We adopt information theory [14, 31]
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14 0 0 0 0 0 0 0.467

Figure 2. Example Intermodule-Edges Graph

as the basis for our measurement instrument, because
we view the design decisions embodied by the graph as
information [2].

Software design is an intellectual process. Since hu-
man short-term memory capacity is limited [24], we
suspect that one important source of mistakes is in-
formation overload. A designer may not consider all
relevant information when making a decision, because
the amount of information is too large to work with
in short-term memory. Our working hypothesis is that
assessment of designs in terms of amounts of various
kinds of information can indicate potential information
overload. Information is stored in human short-term
and long-term memory when a person comprehends a



design abstraction. The amount of such information
may have useful statistical relationships with quality
factors [18]. Future empirical research will investi-
gate the relationship between information overload and
software quality. Information theory-based modeling
methods are promising [1, 20, 21].

Most traditional software metrics count artifact fea-
tures, as though each item is equal in the mind of a de-
signer. For example, Briand, Daly, and W�ust [10] pro-
pose an integrated measurement framework for object-
oriented coupling metrics, based on counts. The frame-
work successfully encompasses many metrics proposed
in the literature. Each qualifying metric is equivalent
to the number of edges of an appropriate graph. We
suspect that an approach that is more sophisticated
than counting will be useful. Information theory is at-
tractive, because it measures symbolic content in a way
that accounts for redundancy and patterns. Regular
patterns are easy for designers to remember, but counts
do not re
ect this. According to information theory,
regular patterns have low information content, because
the symbolic content can be compactly described [14].
The foundation of our measurement instrument is in-
formation theory, rather than just counting.

The notion of coupling is based on relationships
among nodes. Our data consists of a nodes � edges
table that represents a subgraph, S, with n+ 1 nodes.
Let us model the graph S as a probability distribution
on the labels (row patterns), estimated by the propor-
tions of distinct labels, pl; l = 1; : : : ; nS, where nS is the
number of distinct labels [33]. Entropy is the average
information per node. The entropy of the distribution
of node labels [31] is the following.

H(S) =

nSX

l=1

(�pl logpl) (1)

H(S) =
nX

i=0

1

n+ 1

�
� log pL(i)

�
(2)

where all logarithms are base two, and L(i) is a function
that gives the pattern index, l, of the ith row. Figure 2
lists pL(i) for each row of the example; each pL(i) is the
proportion of that row's pattern out of �fteen rows.
The unit of measure is a bit. Entropy is always non-
negative. The example in Figure 2 has H(S) = 2:46
bits per node.

If a graph S0 has no edges, its nodes � edges table is
equivalent to one with an arbitrary number of columns
and zero in all cells, and thus, all patterns are the same
(zeros), pl = 1 and H(S0) = 0.

We multiply entropy by the number of nodes to cal-
culate the estimated minimum description length [14].

I(S) = (n + 1)H(S) (3)

I(S) =
nX

i=0

�
� log pL(i)

�
(4)

The minimum description length, I(S), is the total
amount of information in the structure of the graph.
The example in Figure 2 has I(S) = 36:95 bits.

Consider the subgraph, Si, consisting of all the
nodes in S and the edges of S that have the ith node
as an end point. Disconnected nodes are included in
this subgraph. Similar to S, we label each node with
the set of edges incident to it. We also model Si as
a probability distribution on the labels, estimated by
the proportions of distinct labels, pl. Similar to Equa-
tion (2), the entropy of the distribution of node labels
is the following.

H(Si) =
nX

j=0

1

n+ 1

�
� logpLi(j)

�
(5)

where Li(j) is a function that gives the pattern index,
l, of the jth row of Si. Like H(S), the unit of measure
is a bit. The minimum description length of Si is the
subgraph's total information.

I(Si) =
nX

j=0

�
� logpLi(j)

�
(6)

Because each row of each Si is a subset of the corre-
sponding row of S, S represents the joint distribution
of all the Si. Information theory states that the en-
tropy of a joint distribution is less than or equal to the
sum of the entropy of the components.

nX

i=0

H(Si) � H(S) (7)

Watanabe shows that the di�erence of the two sides of
this inequality is a measure of the relationships among
the components [35].

C(S) =
nX

i=0

H(Si)�H(S) (8)

Van Emden calls this excess entropy [33]. Excess en-
tropy is the average information in relationships. Ex-
cess entropy is always nonnegative. This supports the
Nonnegativity Property in Table 1. The excess entropy
of a graph with no edges is zero, supporting the Null
Value Property in Table 1. The end points are related
by the presence of an edge and the other nodes are re-
lated by the absence of that edge. If the Si are highly
correlated with each other by many edges and many
common disconnected nodes, then the excess entropy



will be high. The example in Figure 2 has C(S) = 3:82
bits per node.

Multiplying excess entropy by the number of nodes
yields the estimated minimumdescription length [14] of
the relationships, in other words, the total information
in the relationships.

(n + 1)C(S) =
nX

i=1

I(Si)� I(S) (9)

Note that I(S0) = 0, because a disconnected node, such
as the environment node, i = 0, has no subgraph Si.
Because it is an information theory-based measure, to-
tal information accounts for patterns in relationships,
and consequently, discriminates among graph struc-
tures in a way that counting measures cannot.

2.3. Coupling of a modular system

Given a modular system, MS , and its intermodule-
edges subgraph, S, the intermodule coupling of a mod-
ular system is the minimum description length of the
relationships in S.

Coupling(MS ) =
nX

i=1

I(Si) � I(S) (10)

By Equation (9), this is equivalent to the excess en-
tropy of S times the number of nodes, n + 1. In [5],
we have proven that Coupling(MS ) has the properties
speci�ed in Table 1, and thus, is a member of the fam-
ily of measures called \coupling of a modular system".
The example in Figure 2 has Coupling(MS) = 57:28
bits.

3. Intramodule Coupling

Intermodule coupling, discussed above, measures at-
tributes of intermodule relationships. We propose a
family of measures called intramodule coupling of a
modular system which is closely related to the coupling
family above.

We transformed the properties of intermodule cou-
pling in Table 1 into properties of intramodule cou-
pling. To conserve space, the following is a summary
of the di�erences. Given the properties in Table 1,
(1) we substitute IntramoduleCoupling for Coupling;
(2) we substitute \intra-" for \inter-"; and (3) we
change the direction of the inequality in the Merging
of Modules Property, so that instead of \not greater
than", it reads \not less than". This inequality ac-
counts for the possibility that an intermodule edge be-
tween two modules may become an intramodule edge
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Figure 3. Example Intramodule-Edges Graph

when they are merged. Otherwise, the properties of
IntramoduleCoupling are the same as those of Coupling
of a modular system.

Intramodule coupling is applicable to the same soft-
ware engineering abstractions as intermodule coupling.
Our measurement protocol for intramodule coupling is
similar to intermodule coupling's protocol, except that
we consider intramodule edges instead of intermodule
edges. Given a modular system, MS , represented by
a graph with n nodes partitioned into modules, and
its environment, represented by one additional discon-
nected node, consider the subgraph, S0, consisting of
all nodes in MS plus the environment node, and all
intramodule edges. The end points of an intramod-
ule edge are both in the same module. Without loss
of generality, index the environment node i = 0, and
the nodes in MS as i = 1; : : : ; n. Like intermodule
coupling, we use nodes � edges tables as a convenient
representation. For example, Figure 3 depicts the in-
tramodule edges subgraph, S0, for the modular system
in Figure 1, and Table 2 shows its nodes � edges table,
and the proportion of each row's pattern, pL(i). Our
measurement instrument for intramodule coupling is
the same as for intermodule coupling, based on infor-
mation theory.

The intramodule coupling of a modular system,MS ,
is the minimum description length of the relationships
in S0.

IntramoduleCoupling(MS ) =
nX

i=1

I(S0

i)� I(S0) (11)

By Equation (9), this is equivalent to the excess en-
tropy of S0 times the number of nodes, n + 1. In [4],



Table 2. Example Intramodule Edges Graph

Edge
Module Node 5 6 8 9 10 12 13 14 15 16 17 pL(i)

Environ. 0 0 0 0 0 0 0 0 0 0 0 0 0.133
m1 1 0 0 0 0 0 0 0 0 0 0 0 0.133
m2 2 1 0 0 0 0 0 0 0 0 0 0 0.067

3 1 1 0 0 0 0 0 0 0 0 0 0.067
4 0 1 0 0 0 0 0 0 0 0 0 0.067

m3 5 0 0 1 1 0 0 0 0 0 0 0 0.067
6 0 0 0 0 1 0 0 0 0 0 0 0.067
7 0 0 1 0 0 0 0 0 0 0 0 0.067
8 0 0 0 1 1 1 0 0 0 0 0 0.067
9 0 0 0 0 0 1 0 0 0 0 0 0.067

m4 10 0 0 0 0 0 0 1 1 0 0 0 0.067
11 0 0 0 0 0 0 1 0 1 0 0 0.067
12 0 0 0 0 0 0 0 1 0 1 1 0.067
13 0 0 0 0 0 0 0 0 1 1 0 0.067
14 0 0 0 0 0 0 0 0 0 0 1 0.067

we have proven that this measure has properties cor-
responding to those speci�ed in Table 1, and thus, is
a member of the family of measures called \intramod-
ule coupling of a modular system". The example in
Figure 3 has IntramoduleCoupling(MS) = 113:40 bits.

4. Cohesion

Briand, Morasca, and Basili [11] propose a set of
properties that de�nes the concept cohesion of a mod-
ular system. Table 3 summarizes the properties of this
family of measures [11]. We reserve the term cohesion
of a modular system for measures that have these prop-
erties.

Intramodule coupling, discussed above, measures in-
formation in intramodule relationships. Intramodule
coupling and cohesion are measures of di�erent at-
tributes of relationships within modules; intramodule
coupling is a quantity of bits, but cohesion is a nor-
malized fraction. Cohesion is applicable to the same
software engineering abstractions as intramodule cou-
pling.

Our measurement protocol for cohesion is the same
as for intramodule coupling. Given a modular sys-
tem, MS , represented by a graph with n nodes, the
intramodule-edges subgraph, S0, is de�ned as above.
Consider the modular system MS (n), consisting of a
complete graph of n nodes in one module, where every
node is connected to every other node. In e�ect, MS (n)

is the \most cohesive" system possible with n nodes.
Also, consider the subgraph, S(n), derived fromMS (n).

Table 3. Properties of Cohesion
Concept/Properties

Cohesion of a Modular System:

1. Nonnegativity and Normalization. Cohesion of a
modular system belongs to a speci�ed interval,
Cohesion(MS ) 2 [0;Max].

2. Null value. Cohesion of a modular system is null
if its set of intramodule edges is empty.

3. Monotonicity. Adding an intramodule edge to a
modular system does not decrease its cohesion.

4. Merging of modules. If two unrelated modules,
m1 and m2, are merged to form a new module,
m1[2, that replaces m1 and m2, then the cohesion
of the modular system with m1[2 is not greater
than the cohesion of the modular system with m1

and m2.

Like the coupling measures, we use nodes � edges ta-
bles as a convenient representation for S0 and S(n). For
example, Figure 3 depicts the intramodule-edges sub-
graph, S0, for the modular system in Figure 1.

As with coupling, most measures of cohesion in the
literature are based on counts of artifact features, as
though each feature is equal in the mind of a designer.
For example, Briand, Daly, and W�ust [9] propose an
integrated measurement framework for object-oriented
cohesion metrics, based on counts. The framework suc-
cessfully encompasses many metrics, and each qualify-



ing metric is equivalent to the number of edges of an
appropriate graph divided by the maximumnumber of
possible edges of interest. As with coupling, we suspect
that a more sophisticated approach than counting will
be useful. Thus, our measurement instrument for co-
hesion is also based on information theory, rather than
just counting.

Cohesion of a modular system, MS , is the minimum
description length of the relationships in S0 divided by
the minimum description length of the relationships in
S(n).

Cohesion(MS ) =
IntramoduleCoupling(MS )

IntramoduleCoupling(MS (n))
(12)

This is equivalent to the ratio of excess entropies,
C(S0)=C(S(n)), because S0 and S(n) have the same
number of nodes. In [4], we have proven that C(S(n)) =
(n � 1) log(n + 1) for n > 2 and that Cohesion(MS )
has the properties speci�ed in Table 3, and thus, is
a member of the family of measures called \cohesion
of a modular system". The example in Figure 3 has
Cohesion(MS ) = 0:149.

5. Discussion

The information-theory approach to software met-
rics di�ers from counting in the way patterns in a graph
can have distinct measurements. We model the pattern
of edges incident to each node as a random variable.
The distribution of that random variable is the basis
for calculating entropy, excess entropy, and informa-
tion. In software engineering terms, we are modeling
both the design decisions to connect each pair of nodes,
and the decisions not to connect the others. The ben-
e�t of this approach is a measure that is sensitive to
patterns of connections. This is attractive, because
software engineers recognize patterns as well.

To illustrate this, let us take a closer look at some
examples of coupling. The number of intermodule
edges is a simple measure that conforms to Briand,
Morasca, and Basili's de�nition of coupling [11]. Fig-
ure 4 shows several example graphs and their measure-
ment for Coupling(MS ) when each node is considered
a module, and thus all edges shown are intermodule
edges. (The environment node is assumed, but not
shown.) The metric shows good discrimination among
similar graphs compared to the number of edges.

Consider examples i. and j. in Figure 4. Both graphs
have the same number of intermodule edges. However,
Coupling(MS i) has a lower value than Coupling(MS j)
due to the fact MS i has a more extensive pattern
of nodes with only one incident edge, which implies
a slightly shorter minimum description length. An

a. b. d.c.

e. g. h.f.

j.i.

Note: environment node is assumed.

Graph Nodes Edges Coupling(MS)

a. 2 1 2.76
b. 3 2 8.00
c. 3 3 16.00
d. 4 3 17.32
e. 4 4 24.07
f. 4 4 26.83
g. 4 5 30.83
h. 4 6 34.83
i. 5 4 22.04
j. 5 4 27.78

Figure 4. Examples

information-theory approach to measuring coupling is
able to discriminate between some graphs that the
number of intermodule edges cannot, due to the pat-
tern of edges.

The same conclusions apply to IntramoduleCou-
pling(MS ) and Cohesion(MS ). However, space does
not allow for additional examples here. Preliminary
analysis explored examples of cohesion [3].

Kitchenham, P
eeger, and Fenton delineate various
properties that a theoretically valid software metric
should have [22]. Following their criteria, it can be
shown that: (1) di�erent modular systems may have
di�erent amounts of Coupling(MS ); (2) Coupling(MS )
represents relationships among modules; (3) the unit
of measure for Coupling(MS ) is a bit, which is an ac-
cepted unit of information, and di�erent bits of in-
formation are considered equivalent when analyzing
information overload; (4) di�erent modular systems
are allowed to have the same value of Coupling(MS );
(5) Coupling(MS ) is compatible with the ratio scale-
type, and the measurement algorithm is a valid in-
strument for an information theory-based measure;
and (6) given a graph, the protocol for abstract-
ing subgraphs is unambiguous and self-consistent.
Thus, Coupling(MS ) is a theoretically valid mea-



sure. IntramoduleCoupling(MS ) is also a theoretically
valid measure, due to its similarity to Coupling(MS ).
Cohesion(MS ) is a dimensionless ratio of bits. It can be
shown that Cohesion(MS ) is also a theoretically valid
measure, because IntramoduleCoupling(MS ) is the nu-
merator, and the denominator is a function of the num-
ber of nodes only.

6. Conclusions

Graphs are widely used in software architecture and
design to depict many abstractions of software. For
example, call graphs have been used by software devel-
opers for many years. The coupling and cohesion of a
graph are just two attributes among many that should
be considered when evaluating the quality of a design.

We de�ne metrics that conform to the properties
proposed by Briand, Morasca, and Basili [11], and
therefore, we call them (intermodule) coupling of a
modular system, intramodule coupling of a modular sys-
tem, and cohesion of a modular system. The de�ni-
tions are based on information theory, taking patterns
of relationships into account, rather than just counts of
graph attributes. Because excess entropy measures the
average connectivity of a system per node, we de�ne
both kinds of coupling as the excess entropy times the
number of nodes in the abstraction, which is the total
information in the relationships. Cohesion is based on
intramodule coupling, normalized to between zero and
one.

These measures may be applied to any graph, and
thus, are suitable for many software engineering ab-
stractions. The practical interpretation of each mea-
sure depends on the underlying abstraction. Accord-
ingly, the usefulness of each measure depends on the
relevance of the abstraction to the development pro-
cess.

The number of edges is also a measure that con-
forms to the coupling properties proposed by Briand,
Morasca, and Basili [11]. The number of edges has
been used extensively as a measurement instrument
for coupling and cohesion in the software metrics lit-
erature. Our preliminary analysis indicated that our
information-theory approach makes �ner-grain distinc-
tions among alternative graphs than counting.

Future research will validate the usefulness of cou-
pling and cohesion in the context of models that predict
software quality [30]. Future research will also apply
information theory to other families of metrics such as
size, length, and complexity, and various module-level
metrics [11].
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