
FEATURE BENCHMARKS

This study concerns feature benchmarks chosen to evaluate various language features,

with programs of different sizes and complexities. A list of these programs is given in Table 1.

The programs Information_flow, Sum, and Wc were those provided with CodeSurfer as

test cases. The programs Pointer, Callofcall, and Testcases were written by the authors to assess

additional critical test cases.

The main language features of the above programs are as follows:

• Information_flow: pointers, pointer casting, double pointers, data and control

dependencies, global variables, function indirection,

• Sum and Wc: external libraries,

• Pointer: pointer flow,

• Callofcall: nested function calls, and

• Testcases: functions calls, local and global variables, call by reference, call built-in

functions, dependence flow.

The programs we developed attempt to cover a range of test cases in C/C++ that are

critical for most slicing methods [Binkley 1993; Bent, Atkinson, Griswold 2000; Binkley, Gold,

Harman 2007]. The purpose of these programs was to exercise the slicing behavior and for in-

depth analysis. In general, these language features included the following:

• Detecting function calls inside control blocks, such as while, if, for, etc. For example,

function f1 is called inside the if-block and while-block as shown:

o if (f1(v1, v2));

o while (f1 (v1, v2) > 0);

• Tracking multiple call depths, for instance the f1 function calls the f2 function with

the slicing variable v1, and the f2 function calls the f3 function with the argument v2

assigned to, and so on:

o void f1() { f2(v1); }

o void f2(int v2) { f3(v2); }

• Nested function calls, for instance where the function f1 uses function f2 as one of its

parameters. We paid particularly close attention to this case, because most of the

existing static slicing methods do not consider the types of parameters.

Frank Tip [Tip 1995] shows in his study of 22 static slicing approaches that the

only approach that takes parameter aliasing into account was with Binkley [Binkley

1993]. Of the other 21 approaches only 9 could support inter-procedural slicing. For

example, the intra-procedural algorithm produced by Weiser does not take into

account which output parameters depend on which input parameters.

As we can see in the following example, the value returned from the function f2 is

used for the second argument of the function f1. The result is that the slice profiles of

both functions are merged.

o f1(v1, f2(v2), v3);

• Distinguish between local and global variables having the same name, and detecting

the flow of the data dependence between them. In addition, there are cases that

include transitive dependence (indirect dependence).

• Call by reference parameter passing. This case supports pointer aliases.

o void f1(int &x, int y, int w);

• Slicing over pointer variables. As shown below the pointer p is defined as a reference

for the variable v. So the slice profile of pointer p should be part of the slice profile

of v, since we can refer to v using the pointer p.

o int *p; p = &v; f(*p);

• Detecting the calls of library functions whose implementation may not be available:

for example calling function abs () from the library #include <cmath>.

In our approach, the code in external libraries is not analyzed as in the case of

CodeSurfer. Specifically, we do not include any code in the analysis unless

specifically provided. We try to keep the slice space at a minimum while still being

useful in testing and maintenance tasks.

Table 1 shows the results obtained by srcSlice and CodeSurfer for the feature

benchmarks. The Program column is the benchmarks used for comparison. The column Slicing

Criterion contains the inputs used for the slicing process. For each program we used our

experience as programmers to select slicing criterion that we felt expose the effects of the

language features on each slicer’s behavior. Additionally, in order to avoid any possible bias

from our choices, we also computed the slice over all possible slicing criterions for each

program.

CodeSurfer can take different combinations of slicing criterion including the point (line

number), variable name, and function name. In order to unify the results obtained by both tools

and since all feature benchmarks were in one source file, we adjusted the slicing criterion for

srcSlice to use the criteria format (f, m, v). As seen in the last row of the table, for CodeSurfer

the number of slices taken is 444. For srcSlice 79 slices were taken.

The program Testcases covers most of the language issues discussed above. The slices

obtained by running both tools using the slicing criterion (main, var1) were observed to be

correct; however, CodeSurfer included some global variables that did not have any dependence

on the slicing variable.

Binkely et al [Binkley, Gold, Harman 2007] reasoned that this case due to the fact that

the slice size in the SDG reports the global variables that modeled as a value-result parameters.

Thus each global variable counts as a node in the SDG added at both the caller and procedure

entry. In contrast, srcSlice ignores those variables in the returned slice. Table 1 demonstrates

these results, as the slicing time and the slice size of srcSlice are smaller using both types of the

slicing criterion. According to the definition by Hoffner [Hoffner 1995], the best slice should be

the smallest correct slice. Manual checking of the slices produced by both tools showed that

they were 100% correct; however srcSlice produced a smaller slice.

From Table 1 we can see that the slice size of srcSlice is consistently smaller than the

ones produced by CodeSurfer (the average forward slice contained 45.2% of the program source

using CodeSurfer and 34.1% using srcSlice) except for the program Pointer using the slicing

criterion (main, var1).

A closer investigation of this program shows that for the sample code in Figure 1 (a),

CodeSurfer has limitations in detecting the flow from pointer *p in line 10 to the receiver

argument z in function f3, which is assigned in the body of the function to pointer zp at line 3.

(a)

1. f3 (int z) {

2. int *zp;

3. zp = &z;

4. zp++;

5. }

6. main () {

7. int var1 = 1;

8. int *p;

9. p = &var1;

10. f3 (*p);

11. }

(b)

file/f3/z/@index (1), slines {1,3}, pointers {zp}

file/f3/zp/@index (2), slines {2,3,4}, dvariables {zp}

file/main/var1/@index (1), slines {7,9}, pointers {p}

file/main/p/@index (2), slines {8,9,10}, cfunctions {f3@ (1)}

Figure 1 (a) Sample source code from Pointer program, (b) System dictionary with four

slice profiles for the source code in (a).

Bent et al [Bent, Atkinson, Griswold 2007] describe this case as a gray area in the

CodeSurfer algorithm, and defined it as “handling undefined entities”. In particular a call of the

form f3 (&var1) will not be treated as a possible definition of var1. Also, an uninitialized

pointer will not be a member of any points-to set so any effects through it are not tracked. That

is, the statements *p = var1; z = *p; when slicing on var1 will not add z to the slicing criterion,

nor is there a warning.

However, this is not the case when slicing over all possible criterions, i.e., the number of

slices taken is equal to 37. The slice size is equal to 25, and manual checking of the returned

slice showed that CodeSurfer detects the lines from 1 – 4 using the slicing criterion (f3, *p) in

line 10.

In contrast, srcSlice, as shown in Figure 1 (b), captures this case and included in the slice

profile for each variable. This inability to track the chains of pointers in this particular example

in CodeSurfer results in a slice with missing critical statements, especially when the slice

includes aliases of the original variable.

The accuracy of the slices produced using srcSlice for the programs Information_flow,

Sum, Callofcall, and Wc was identical to CodeSurfer. The slices produced using srcSlice was

manually checked and found to be correct. The difference in the results obtained by CodeSurfer

was due to retrieving unrelated statements; such as statements mentioned inside the blocks of for

and while predicates and standard libraries. That is, CodeSurfer highlights statements that are

not only semantically related to the slicing criterion but also syntactically related to the

executable slice [Bent, Atkinson, Griswold 2007]. For example, CodeSurfer returned all relevant

statements that modify or determine control flow statement in the else part of an if statement

whose body was not in the slice.

As shown, for the settings chosen, CodeSurfer provides a correct slice with regards to

data and control dependencies. The results also show that srcSlice produced accurate slices

when compared to CodeSurfer. We note again that the settings used for CodeSurfer were to

enhance accuracy and not performance.

Table 1.Feature Benchmarks results and comparison of CodeSurfer and srcSlice, time measured in seconds, slice size

measured in number of statements, (%) columns are the slice size relative to LOC, (F) = number of files, (M) = number of

functions, LOC = lines of code.

Program

Size Slicing Criterion CodeSurfer srcSlice

LOC F M Method Variable Slices

Taken

Slicing

Time

Slice

Size
%

Slices

Taken

Slicing

Time

Slice

Size
%

Information

_flow
112 1 12

main hi 1
1.481

32 28.6 1
0.978

27 24.1

All Possible Criterions 149 66 58.9 22 48 42.9

Sum
21 1 2

main sum 1
0.989

6 28.6 1
0.531

4 19.0

All Possible Criterions 26 14 66.7 2 8 38.1

Wc

39 1 3

line_char_count eof_flag 1

1.212

16 41.0 1

0.362

10 25.6

Scan_line i 1 7 17.9 1 4 10.3

All Possible Criterions 46 24 61.5 9 19 48.7

Pointer
36 1 5

main var1 1
1.519

11 30.6 1
0.358

15 41.7

All Possible Criterions 37 25 69.4 8 17 47.2

Testcases
114 1 14

main var1 1
7.662

50 43.9 1
0.641

44 38.6

All Possible Criterions 156 79 69.3 24 56 49.1

Callofcall
24 1 3

main var1 1
2.921

4 16.7 1
0.411

4 16.7

All Possible Criterions 23 13 54.2 7 10 41.7

Total 346 6 39 444 15.784 347 79 3.281 266

Average 57.7 1 6.5 34.2 2.630 26.7 45.2 6.1 0.546 20.5 34.1

REFERE4CES

[Bent, Atkinson, Griswold 2000] Bent, L., Atkinson, D. C., and Griswold, W. G., (2000), "A

Qualitative Study of Two Whole-Program Slicers for C", University of California at San

Diego. A preliminary version appeared at FSE '00, Technical Report CS20000643.

[Bent, Atkinson, Griswold 2007] Bent, L., Atkinson, D. C., and Griswold, W. G., (2007), "A

qualitative study of two whole-program slicers for C", pp.

[Binkley 1993] Binkley, D., (1993), "Slicing in the Presence of Parameter Aliasing", In

Proceedings of the Third Software Engineering Research Forum, Orlando, Florida, pp.

261-268.

[Binkley, Gold, Harman 2007] Binkley, D., Gold, N., and Harman, M., (2007), "An Empirical

Study of Static Program Slice Size", ACM Transactions on Software Engineering and

Methodology, vol. 16, no. 2, pp. 1-32.

[Binkley, Gold, Harman 2007] Binkley, D., Gold, N., and Harman, M., (2007), "An empirical

study of static program slice size", ACM Transactions on Software Engineering and

Methodology (TOSEM), vol. 16, no. 2, pp. 8.

[Hoffner 1995] Hoffner, T., (1995), "Evaluation and comparison of program slicing tools.

Technical report": D. o. C. a. I. Science, Department of Computer and Information

Science, Linkping University.

[Tip 1995] Tip, F., (1995), "A Survey of Program Slicing Techniques", Journal of Programming

Language, vol. 3, no. 0, pp. 121-189.

