FEATURE BENCHMARKS
This study concerns feature benchmarks chosen to evaluate various language features, with programs of different sizes and complexities. A list of these programs is given in Table 1.
The programs Information_flow, Sum, and Wc were those provided with CodeSurfer as test cases. The programs Pointer, Callofcall, and Testcases were written by the authors to assess additional critical test cases.
The main language features of the above programs are as follows:
· Information_flow: pointers, pointer casting, double pointers, data and control dependencies, global variables, function indirection,
· Sum and Wc: external libraries,
· Pointer: pointer flow,
· Callofcall: nested function calls, and
· Testcases: functions calls, local and global variables, call by reference, call built-in functions, dependence flow.
The programs we developed attempt to cover a range of test cases in C/C++ that are critical for most slicing methods [Binkley 1993; Bent, Atkinson, Griswold 2000; Binkley, Gold, Harman 2007]. The purpose of these programs was to exercise the slicing behavior and for in-depth analysis. In general, these language features included the following:
· Detecting function calls inside control blocks, such as while, if, for, etc. For example, function f1 is called inside the if-block and while-block as shown:
· if (f1(v1, v2));
· while (f1 (v1, v2) > 0);
· Tracking multiple call depths, for instance the f1 function calls the f2 function with the slicing variable v1, and the f2 function calls the f3 function with the argument v2 assigned to, and so on:
· void f1() { f2(v1); }
· void f2(int v2) { f3(v2); }
· Nested function calls, for instance where the function f1 uses function f2 as one of its parameters. We paid particularly close attention to this case, because most of the existing static slicing methods do not consider the types of parameters.
Frank Tip [Tip 1995] shows in his study of 22 static slicing approaches that the only approach that takes parameter aliasing into account was with Binkley [Binkley 1993]. Of the other 21 approaches only 9 could support inter-procedural slicing. For example, the intra-procedural algorithm produced by Weiser does not take into account which output parameters depend on which input parameters.
As we can see in the following example, the value returned from the function f2 is used for the second argument of the function f1. The result is that the slice profiles of both functions are merged.
· f1(v1, f2(v2), v3);
· Distinguish between local and global variables having the same name, and detecting the flow of the data dependence between them. In addition, there are cases that include transitive dependence (indirect dependence).
· Call by reference parameter passing. This case supports pointer aliases.
· void f1(int &x, int y, int w);
· Slicing over pointer variables. As shown below the pointer p is defined as a reference for the variable v. So the slice profile of pointer p should be part of the slice profile of v, since we can refer to v using the pointer p.
· int *p; p = &v; f(*p);
· Detecting the calls of library functions whose implementation may not be available: for example calling function abs () from the library #include <cmath>.
In our approach, the code in external libraries is not analyzed as in the case of CodeSurfer. Specifically, we do not include any code in the analysis unless specifically provided. We try to keep the slice space at a minimum while still being useful in testing and maintenance tasks.
Table 1 shows the results obtained by srcSlice and CodeSurfer for the feature benchmarks. The Program column is the benchmarks used for comparison. The column Slicing Criterion contains the inputs used for the slicing process. For each program we used our experience as programmers to select slicing criterion that we felt expose the effects of the language features on each slicer’s behavior. Additionally, in order to avoid any possible bias from our choices, we also computed the slice over all possible slicing criterions for each program.
CodeSurfer can take different combinations of slicing criterion including the point (line number), variable name, and function name. In order to unify the results obtained by both tools and since all feature benchmarks were in one source file, we adjusted the slicing criterion for srcSlice to use the criteria format (f, m, v). As seen in the last row of the table, for CodeSurfer the number of slices taken is 444. For srcSlice 79 slices were taken.
The program Testcases covers most of the language issues discussed above. The slices obtained by running both tools using the slicing criterion (main, var1) were observed to be correct; however, CodeSurfer included some global variables that did not have any dependence on the slicing variable.
Binkely et al [Binkley, Gold, Harman 2007] reasoned that this case due to the fact that the slice size in the SDG reports the global variables that modeled as a value-result parameters. Thus each global variable counts as a node in the SDG added at both the caller and procedure entry. In contrast, srcSlice ignores those variables in the returned slice. Table 1 demonstrates these results, as the slicing time and the slice size of srcSlice are smaller using both types of the slicing criterion. According to the definition by Hoffner [Hoffner 1995], the best slice should be the smallest correct slice. Manual checking of the slices produced by both tools showed that they were 100% correct; however srcSlice produced a smaller slice.
From Table 1 we can see that the slice size of srcSlice is consistently smaller than the ones produced by CodeSurfer (the average forward slice contained 45.2% of the program source using CodeSurfer and 34.1% using srcSlice) except for the program Pointer using the slicing criterion (main, var1).
A closer investigation of this program shows that for the sample code in Figure 1 (a), CodeSurfer has limitations in detecting the flow from pointer *p in line 10 to the receiver argument z in function f3, which is assigned in the body of the function to pointer zp at line 3.

	(a)
	1.
	f3 (int z) {

	
	2.
	int *zp;

	
	3.
	zp = &z;

	
	4.
	zp++;

	
	5.
	}

	
	6.
	main () {

	
	7.
	int var1 = 1;

	
	8.
	int *p;

	
	9.
	p = &var1;

	
	10.
	f3 (*p);

	
	11.
	}

	(b)
	file/f3/z/@index (1), slines {1,3}, pointers {zp}

	
	file/f3/zp/@index (2), slines {2,3,4}, dvariables {zp}

	
	file/main/var1/@index (1), slines {7,9}, pointers {p}

	
	file/main/p/@index (2), slines {8,9,10}, cfunctions {f3@ (1)}

[bookmark: _Ref325232818]Figure 1 (a) Sample source code from Pointer program, (b) System dictionary with four slice profiles for the source code in (a).

Bent et al [Bent, Atkinson, Griswold 2007] describe this case as a gray area in the CodeSurfer algorithm, and defined it as “handling undefined entities”. In particular a call of the form f3 (&var1) will not be treated as a possible definition of var1. Also, an uninitialized pointer will not be a member of any points-to set so any effects through it are not tracked. That is, the statements *p = var1; z = *p; when slicing on var1 will not add z to the slicing criterion, nor is there a warning.
However, this is not the case when slicing over all possible criterions, i.e., the number of slices taken is equal to 37. The slice size is equal to 25, and manual checking of the returned slice showed that CodeSurfer detects the lines from 1 – 4 using the slicing criterion (f3, *p) in line 10.
In contrast, srcSlice, as shown in Figure 1 (b), captures this case and included in the slice profile for each variable. This inability to track the chains of pointers in this particular example in CodeSurfer results in a slice with missing critical statements, especially when the slice includes aliases of the original variable.
The accuracy of the slices produced using srcSlice for the programs Information_flow, Sum, Callofcall, and Wc was identical to CodeSurfer. The slices produced using srcSlice was manually checked and found to be correct. The difference in the results obtained by CodeSurfer was due to retrieving unrelated statements; such as statements mentioned inside the blocks of for and while predicates and standard libraries. That is, CodeSurfer highlights statements that are not only semantically related to the slicing criterion but also syntactically related to the executable slice [Bent, Atkinson, Griswold 2007]. For example, CodeSurfer returned all relevant statements that modify or determine control flow statement in the else part of an if statement whose body was not in the slice.
As shown, for the settings chosen, CodeSurfer provides a correct slice with regards to data and control dependencies. The results also show that srcSlice produced accurate slices when compared to CodeSurfer. We note again that the settings used for CodeSurfer were to enhance accuracy and not performance.

[bookmark: _Ref325231753]Table 1.Feature Benchmarks results and comparison of CodeSurfer and srcSlice, time measured in seconds, slice size measured in number of statements, (%) columns are the slice size relative to LOC, (F) = number of files, (M) = number of functions, LOC = lines of code.
	Program
	Size
	Slicing Criterion
	CodeSurfer
	srcSlice

	
	LOC
	F
	M
	Method
	Variable
	Slices
Taken
	Slicing
Time
	Slice
Size
	%
	Slices
Taken
	Slicing
Time
	Slice
Size
	%

	Information
_flow
	112
	1
	12
	main
	hi
	1
	1.481
	32
	28.6
	1
	0.978
	27
	24.1

	
	
	
	
	All Possible Criterions
	149
	
	66
	58.9
	22
	
	48
	42.9

	Sum
	21
	1
	2
	main
	sum
	1
	0.989
	6
	28.6
	1
	0.531
	4
	19.0

	
	
	
	
	All Possible Criterions
	26
	
	14
	66.7
	2
	
	8
	38.1

	Wc
	39
	1
	3
	line_char_count
	eof_flag
	1
	1.212
	16
	41.0
	1
	0.362
	10
	25.6

	
	
	
	
	Scan_line
	i
	1
	
	7
	17.9
	1
	
	4
	10.3

	
	
	
	
	All Possible Criterions
	46
	
	24
	61.5
	9
	
	19
	48.7

	Pointer
	36
	1
	5
	main
	var1
	1
	1.519
	11
	30.6
	1
	0.358
	15
	41.7

	
	
	
	
	All Possible Criterions
	37
	
	25
	69.4
	8
	
	17
	47.2

	Testcases
	114
	1
	14
	main
	var1
	1
	7.662
	50
	43.9
	1
	0.641
	44
	38.6

	
	
	
	
	All Possible Criterions
	156
	
	79
	69.3
	24
	
	56
	49.1

	Callofcall
	24
	1
	3
	main
	var1
	1
	2.921
	4
	16.7
	1
	0.411
	4
	16.7

	
	
	
	
	All Possible Criterions
	23
	
	13
	54.2
	7
	
	10
	41.7

	Total
	346
	6
	39
	
	444
	15.784
	347
	
	79
	3.281
	266
	

	Average
	57.7
	1
	6.5
	
	34.2
	2.630
	26.7
	45.2
	6.1
	0.546
	20.5
	34.1

REFERENCES
[Bent, Atkinson, Griswold 2000] Bent, L., Atkinson, D. C., and Griswold, W. G., (2000), "A Qualitative Study of Two Whole-Program Slicers for C", University of California at San Diego. A preliminary version appeared at FSE '00, Technical Report CS20000643.
[Bent, Atkinson, Griswold 2007] Bent, L., Atkinson, D. C., and Griswold, W. G., (2007), "A qualitative study of two whole-program slicers for C", pp.
[Binkley 1993] Binkley, D., (1993), "Slicing in the Presence of Parameter Aliasing", In Proceedings of the Third Software Engineering Research Forum, Orlando, Florida, pp. 261-268.
[Binkley, Gold, Harman 2007] Binkley, D., Gold, N., and Harman, M., (2007), "An Empirical Study of Static Program Slice Size", ACM Transactions on Software Engineering and Methodology, vol. 16, no. 2, pp. 1-32.
[Binkley, Gold, Harman 2007] Binkley, D., Gold, N., and Harman, M., (2007), "An empirical study of static program slice size", ACM Transactions on Software Engineering and Methodology (TOSEM), vol. 16, no. 2, pp. 8.
[Hoffner 1995] Hoffner, T., (1995), "Evaluation and comparison of program slicing tools. Technical report": D. o. C. a. I. Science, Department of Computer and Information Science, Linkping University.
[Tip 1995] Tip, F., (1995), "A Survey of Program Slicing Techniques", Journal of Programming Language, vol. 3, no. 0, pp. 121-189.

